As the first-mentioned form was always crowded with apothecia in every stage of development, as well as with carpogonia and spermogonia, it seemed natural to conclude that the difference was entirely due to the presence or absence of spermatia in sufficient numbers to ensure fertilization. The period during which copulation is possible passes very rapidly, though subsequent development is slow, occupying about half-a-year from the time of fertilization to the formation of the first ascus.
Baur confirmed Stahl’s observations on the various developmental changes. In several instances he found a spermatium fused with the trichogyne, though he could not see continuity between the lumina of the fusing cells. After copulation with the spermatium the trichogyne nucleus, which occupied the lower third of the terminal cell, had disappeared, and the plasma contents had acquired a deeper tint; the other trichogyne cells, which had also lost their nuclei, were partly collapsed owing to the pressure of the surrounding tissue, and openings were plainly visible through some of the swollen septa, especially of the lower cells. In addition the ascogonial cells, all of which were uninucleate, had increased in number by intercalary division. Plasma connections were opened from cell to cell, but only in the primary septa, the later formed cell-membranes being continuous. Ascogenous hyphae had branched out from the ascogonium as a series of uninucleate cell rows from which the asci finally arose.
Baur’s interpretation was that the first cell of the ascogonium reached by the male nucleus after its passage down through the cells of the trichogyne represented the egg-cell, and that, after fusion, the resultant nucleus divided, and a daughter nucleus passed on to the other auxiliary-cells. No male nucleus nor fusion of nuclei was, however, observed by him, and his deductions rest on conjecture.
Krabbe[552] and after him Mäule[553] found in Collema pulposum reproductive organs similar to those described by Stahl, but in a recent paper on an American form of that species a peculiar condition has been described by Freda Bachmann[554]. She[555] found that the spermatia originated, not in spermogonia, but as groups of cells budded off from vegetative hyphae within the tissue of the lichen and occupying the same position as spermogonia, i.e. the region close below the upper surface. The trichogynes, therefore, never emerged into the open, but travelled towards these internal spermatia, and fusion with them was effected. The changes that afterwards took place in the carpogonial cells were similar to those that had been recognized by Stahl and Baur as consequent on fertilization.
Additional cytological details have been published in a subsequent paper[556]: after fusion with the spermatium the terminal cell of the trichogyne collapsed, its nucleus became disintegrated and the cross septa of the lower trichogyne cells became perforated, these perforations being closed again at a later stage by a gelatinous plug. The nuclear history is more doubtful: the disappearance of the nuclei from the spermatium and from the terminal cell of the trichogyne was noted; two nuclei were seen to be present in the penultimate cell, and these the author interpreted as division products of the original cell nucleus. In the same cell, lying close against the lower septum and partly within the opening, there was a mass of chromatin material which might be the male nucleus migrating downwards. The next point of interest was observed in the twelfth cell from the tip in which there were two nuclei, a larger and a smaller, the latter judged to be the male cell, the small size being due to probable division of the spermatium nucleus either before or after leaving the spermatium. It is stated however that the spermatium was always uninucleate. Meanwhile the cells of the ascogonium had increased in size, the perforations of the septa between the cells became more evident, and their nuclei persisted. In one cell at this stage two nuclei were present, one of the two presumably a male nucleus; no fusion of nuclei was observed in the ascogonial cells. Later the cross walls between the cells were seen to have disappeared more completely and migration of nuclei had taken place, so that some of the cells appeared to be empty while others were multinucleate. Considerable multiplication of the nuclei occurred before the ascogenous hyphae were formed: twelve nuclei were observed in a part of the ascogonium which was just beginning to give off a branch. Several branches might arise from one cell, and their cells were either uni- or binucleate, the nuclei being larger than those of the vegetative hyphae. The formation of the asci was not distinctly seen, but young binucleate asci were not uncommon. The fusion of the two nuclei was followed by the enlargement of the ascus and the subsequent nuclear division for spore formation. In the first heterotypic division twelve chromosomes, double the number observed in the vegetative nucleus, were counted on the equatorial plate. In the third division they were reduced to the normal number of six, from which F. Bachmann concludes that a twofold fusion must have taken place—in the ascogonium and again in the ascus.
Spiral or coiled ascogonia were observed by Wainio[557] in the gelatinous crustaceous genus Pyrenopsis, but the trichogynes did not reach the surface. In Lichina[558], a maritime gelatinous lichen where the carpogonia occur in groups, trichogynes have not been demonstrated.
A peculiarity of some gelatinous lichens noted by Stahl[559] and others in species of Physma, and by Forssell[560] in Pyrenopsis and Psorotichia, is the development of carpogonia at the base of, and within the perithecial walls of old spermogonia. No special significance is however attached to this phenomenon, and it is interesting to note that a similar growth was observed by Zukal[561] in a pyrenomycetous fungus, Pleospora collematum, a harmless parasite on Physma compactum and other Collemaceae. The structures invaded were true pycnidia of the fungus as the minute spores were seen to germinate. A “Woronin’s hypha” at the base of several of these pycnidia developed asci which pushed up among the spent sporophores.
b. Carpogonia of non-gelatinous Lichens. The soft loose tissue of the gelatinous lichens is more favourable for the minute study of apothecial development than the closely interwoven hyphae of non-gelatinous forms, but Borzi[562] had already extended the study to species of Parmelia, Anaptychia, Sticta, Ricasolia and Lecanora, and in all of them he succeeded in establishing the presence of ascogonia and trichogynes. After him a constant succession of students have worked at the problem of reproduction in lichens.