a. Sexual or Asexual. It has been necessary to give the preceding detailed account of these various structures—pycnidia or spermogonia—in view of the extreme importance attached to them as the possible male organs of the lichen plant, and, in giving the results obtained by different workers, the terminology employed by each one has been adopted as far as possible: those who consider them to be sexual structures call them spermogonia; those who refuse to accept that view write of them as pycnidia.

Tulasne, Nylander and others unhesitatingly accepted them as male organs without any knowledge of the female cell or of any method of fertilization. Stahl’s discovery of the trichogyne seemed to settle the whole question; but though he had evidence of copulation between the spermatium and the receptive cell or trichogyne he had no real record of any sexual process.

Many modern lichenologists reject the view that they are sexual; they regard them as secondary organs of fructification analogous to the pycnidia so abundant in the related groups of fungi. One would naturally expect these pycnidia to reappear in lichens, and it might be considered somewhat arbitrary to classify pycnidia in Sphaeropsideae as asexual reproductive organs, and then to regard the very similar structures in lichens as sexual spermogonia. It has also been pointed out that when undoubted pycnidia do occur on the lichen thallus, as in Calicium, Strigula, Peltigera, etc., they in no way differ from structures regarded as spermogonia except in the size of the pycnidiospores—and, even among these, there are transition forms. The different types of spermatia can be paralleled among the fungal pycnidiospores and the same is also true as regards the sporophores generally. Those described as arthrosterigmata by Nylander—as endosporous by Steiner—were supposed to be peculiar to lichens; but recently Laubert[734] has described a fungal pycnidium which grew on the trunk of an apple tree and in which the spores are not borne on upright sporophores but are budded off from the cells of the plectenchyma lining the pycnidium. It may be that future research will discover other such instances, though that type of sporophore is evidently of very rare occurrence among fungi.

b. Comparison with Fungi. The most obvious spermogonia among fungi with which to compare those of lichens occur in the Uredineae where they are associated with the life-cycle of a large number of rust species. They are small flask-shaped structures very much like the simpler forms of pycnidia and they produce innumerable spermatia which are budded off from the tips of simple spermatiophores. The mature spermatium has a delicate cell-wall and contains a thin layer of cytoplasm with a dense nucleus which occupies almost the whole cavity, cytological characters which, as Blackman[735] has pointed out, are characteristic of male cells and are not found in any asexual reproductive spores. If we accept Istvanffi’s[736] description and figures of the lichen spermatia as correct, their structure is wholly different: there being a very small nucleus in the centre of the cell comparable in size with those of the vegetative hyphae ([Fig. 115]).

Fig. 115. a, spermatia; b, hypha produced from spermatium of Buellia punctiformis Th. Fr. × 950 (after Istvanffi).

Lichen “spermatia” also differ very strikingly from the male cells of any given group of plants in their very great diversity of form and size; but the chief argument adduced by the opponents of the sexual theory is the capacity of germination that has been proved to exist in a fair number of species. It is true that germination has been induced in the spermatia of the Uredines by several research workers—by Plowright[737], Sappin-Trouffy[738] and by Brefeld[739]—who employed artificial nutritive solutions (sugar or honey), but the results obtained were not much more than the budding process of yeast cells. Brefeld also succeeded in germinating the “spermatia” of a pyrenomycetous fungus, Polystigma rubrum, one of the germinating tubes reaching a length four times that of the spore; but it is now known that all of these fungal spermatia are non-functional, either sexually or asexually, and degenerate soon after their expulsion, or even while still in the spermogonium.

c. Influence of Symbiosis. In any consideration of lichens it is constantly necessary to hark back to their origin as symbiotic organisms, and to bear in mind the influence of the composite life on their development. After germination from the spore, the lichen hypha is so dependant on its association with the alga, that, in natural conditions, though it persists without the gonidia for a time, it attains to only a rather feeble growth of mycelial filaments. In nutritive cultures, as Möller has proved, the absence of the alga is partly compensated by the artificial food supply, and a scanty thalline growth is formed up to the stage of pycnidial fruits. Not only in pycnidia but in all the fruiting bodies of lichens, symbiosis has entailed a distinct retrogression in the reproductive importance of the spores, as compared with fungi.

In Ascomycetes, the asci constitute the overwhelming bulk of the hymenium; in most lichens, there are serried ranks of paraphyses with comparatively few asci, and the spores are often imperfectly developed. It would not therefore be surprising if the bodies claimed by Möller and others as pycnidiospores had also lost even to a considerable extent their reproductive capacity.