Fig. 47. Peltigera canina DC. Vertical section of cortex and gonidial zone × 600.
4. Plectenchymatous: the last of Hue’s types corresponds with the first described by Zukal. It is the result of the lateral coherence and frequent septation of the hyphae into short almost square or rounded cells ([Fig. 47]). The simplest type of such a cortex can be studied in Leptogium, a genus of gelatinous lichens in which the tips of the hyphae are cut off at the surface by one or more septa. The resulting cells are wider than the hyphae and they cohere together to form, in some species, disconnected patches of cells; in others, a continuous cortical covering one or more cells thick, while in the margin of the apothecium they form a deep cellular layer. The cellular type of cortex is found also, as already stated, in some crustaceous Pertusariae, and in a few squamulose genera or species. It forms the uppermost layer of the Peltigera thallus and both cortices of many of the larger foliose lichens such as Sticta, Parmelia, etc.
5. The “fibrous” cortex must be added to this series, as was pointed out by Heber Howe[348] who gave the less appropriate designation of “simple” to the type. It consists of long rather sparingly branched slender hyphae that grow in a direction parallel with the surface of the thallus ([Fig. 48]). It is characteristic of several fruticose and foliose lichens with more or less upright growth, such as we find in several of the Physciae, and in the allied genus Teloschistes, in Alectoria, several genera of Roccellaceae, in Usnea longissima and in Parmelia pubescens, etc. Zukal would have included all the Usneae as the tips are fibrous.
Fig. 48. Physcia ciliaris DC. Vertical section of thallus. a, cortex; b, gonidial zone; c, medulla. × 100.
More than one type of cortex, as already stated, may appear in a genus: a striking instance of variability occurs in Solorina where, as Hue[349] has pointed out, the cortex of S. octospora is fastigiate, that of all the other species being plectenchymatous. Cortical development is a specific rather than a generic characteristic.
b. Origin of Variation in Cortical Structure. The immediate causes making for differentiation in cortical development are: the prevailing direction of growth of the hyphae as they rise from the gonidial zone; the amount of branching and the crowding of the filaments; the frequency of septation; and the thickening or degeneration of the cell-walls which may become almost or entirely mucilaginous. In the plectenchymatous cortex, the walls may remain quite thin and the cells small as in Xanthoria parietina, or the walls may be much thickened as in both cortices of Sticta. As a result of stretching the cell may increase enormously in size: in some instances where the internal hyphae are about 3 µ to 4 µ in width, the cortical cells formed from these hyphae may have a cell cavity 15 µ to 16 µ in diameter.
c. Loss and Renewal of Cortex. Very frequently the cortex is covered over by a layer of homogeneous mucilage which forms an outer cuticle. It arises from the continual degeneration of the outer cell-walls and it is liable to friction and removal by atmospheric agency as was first described by Schwendener[350] in the weather-beaten cortex of Umbilicaria pustulata. He had noted the irregular jagged outline of the cross section of the thallus, and he then suggested, as the probable reason, the decay of the outer rind with the constant renewal of it by the hyphae from the underlying gonidial zone, though he was unable definitely to prove his theory. The peeling of the dead outer layer (with its replacement by new tissue) has however been observed many times since his day. It has been described by Darbishire[351] in Pertusaria: in that genus there is at first a primary cortex formed of hyphae that grow in a radial direction, parallel to the surface of the thallus. The walls of these hyphae become gradually more and more mucilaginous till the cells are obliterated. Meanwhile short-celled filaments grow up in serried ranks from the gonidial layer and finally push off the dead “fibrous” cortex. The new tissue takes on a plectenchymatous character, and the outer cells in time become decomposed and provide a mucilaginous cuticle which in turn is also subject to wasting.
The same process of peeling was noted by Rosendahl[352] in some species of brown Parmeliae, where the dead tissues were thrown off in shreds, though only in isolated patches. But whether in patches or as a continuous sheath, there is constant degeneration, with continual renewal of the dead material from the internal tissues.