The difficulties, already referred to in regard to Antrim, of tracing the probable form of ground on which the volcanic eruptions began, are even greater in the case of the Mull plateau. We can dimly perceive that the depression in the crystalline rocks of the Highlands which had, from at least the older part of the Jurassic period, stretched in a N.N.W. direction along what is now the western margin of Argyleshire, lay beneath the sea in Jurassic time, and was then more or less filled up with sedimentary deposits. The hollow appears thereafter to have become a land-valley, whence the Jurassic strata were to a large extent cleared out by denudation before its subsequent submergence under the sea in which the upper Cretaceous deposits accumulated. Professor Judd has shown that relics of these Cretaceous strata appear on both sides of the plateau from under the protecting cover of basalt-sheets. But, before the volcanic eruptions began, the area had once again been raised into land, and the youngest Secondary formations had been extensively eroded.

In their general aspect the basalts of Mull agree with those of Antrim, and the circumstances under which they were erupted were no doubt essentially the same. But considerable differences in detail are observable between the succession of rocks in the two areas. When I first visited the island in 1866, the only available maps, with any pretensions to accuracy, were the Admiralty charts; but, as these do not give the interior except in a generalized way, it was difficult to plot sections from them, and to arrive at satisfactory conclusions as to the thickness of different groups of rock. Accordingly, as the successive nearly flat flows of basalt can be traced from the sea-level up to the top of Ben More, I contented myself with the fact that the total depth of lava-beds in Mull was at least equal to the height of that mountain, or 3169 feet. The publication of the Ordnance Survey Maps now enables us to make a nearer approximation to the truth. From the western base of the magnificent headland of Gribon, the basalts in almost horizontal beds rise in one vast sweep of precipice and terraced slope to a height of over 1600 feet, and then stretch eastwards to pass under the higher part of Ben More, at a distance of some eight miles. They have a slight easterly inclination, so that the basement sheets seen at the sea-level, at the mouth of Loch Scridain, gradually sink below that level as they go eastward. It is not easy to get a measurement of dip among these basalts, except from a distance. If we take the inclination at only 1°, the beds which are at the base of the cliff on the west, must be about 700 feet below the sea on the line of Ben More, which would give a total thickness of nearly 3900 feet of bedded lava below the top of that mountain. We shall not probably overestimate the thickness of the Mull plateau if we put it at 3500 feet.

The base of the volcanic series of Mull can best be seen on the south coast at Carsaig, and at the foot of the precipices of Gribon. As already stated, it is there found resting above Cretaceous and Jurassic rocks. The lowest beds are basalt-tuffs, of the usual dull green colour. They are in places much intermingled with sandy and gravelly sediment, as if the volcanic debris had fallen into water where such sediment was in course of deposition. One of the most interesting features, indeed, in this basement part of the series, is the occurrence of bands of non-volcanic material which accumulated after the tuffs and some of the lavas had been erupted, but before the main mass of basalts. Those at Carsaig include a lenticular bed, 25 feet thick, of rolled flints, which, with some associated sandy bands, lies between sheets of basalt. On the opposite side of the promontory is the well-known locality of Ardtun, from which the first land-plants in the volcanic series were determined. The actual base of the basalts is not there seen, being covered by the sea. The "leaf-beds," with their accompanying sandstones, gravels, and limestone, lie upon a sheet of basalt, which in some parts is exceedingly slaggy on the top, passing down into a black compact structure, and assuming at the base of the cliff a columnar arrangement, with the prisms curved and built up endways towards each other. Some of the gravels exceed 30 feet in thickness, and consist of rolled flints, bits of chalk, and pieces of basalt and other basic igneous rocks. But some of their most interesting ingredients are pebbles of sanidine lavas, which have been recognized in them by Prof. G. Cole.[241] No known protrusions of such lavas occur anywhere beneath or interstratified with the plateau-basalts of this district. As will be afterwards shown, all the visible acid rocks, the geological relations of which can be ascertained, are here of younger date than these basalts. I am disposed to regard the fragments found in the Ardtun conglomerates as probably derived from some of the basalt-conglomerates of the plateau, in which fragments of siliceous igneous rocks do occur. Though there is no evidence that any lavas of that nature were here poured out at the surface before or during the emission of the basalts, the contents of these fragmental volcanic accumulations suggest that such lavas, already consolidated, lay at some depth beneath the surface, and that fragments were torn off from them during the explosions that threw out the materials of the basalt-conglomerates to the surface.

[241] Quart. Jour. Geol. Soc. xliii. (1887) p. 277.

The succession of strata at the Ardtun headland varies considerably in a short distance, some of the sedimentary deposits rapidly increasing or diminishing in thickness. The section as measured by Mr. Starkie Gardner is as follows[242]:—

Columnar basalt, 40 feet.
Position of first leaf-bed, obscured by grass, about 2 feet.
Gravel varying from about 25 feet to a maximum of nearly 40 feet.
Black or second leaf-bed, 21/2 feet.
Gravel about 7 feet.
Grey clay, 2 feet.
Laminated sandstone, 6 inches, with 3 inches of fine limestone,
containing leaves at the base.
Clay, with leaves at base, 1 foot.
Clunch, with rootlets, 7 inches.
Amorphous basalt, becoming columnar at base, about 60 feet.

[242] Op. cit. [p. 280].

Mr. Starkie Gardner has called attention to the extraordinarily fresh condition of the vegetation in some of the layers of the Ardtun section. One of the leaf-beds he has found to be made up for an inch or two of a pressed mass of leaves, lying layer upon layer, and retaining almost the colours of dead vegetation. Among the plants represented is a large purple Ginkgo and a fine Platanites, one leaf measuring 151/2 inches long by 101/2 broad. The characteristic dicotyledonous leaves at this locality possessed relatively large foliage.[243]

[243] For fuller local details regarding the Ardtun leaf-beds, I may refer to the original paper by the Duke of Argyll (Quart. Jour. Geol. Soc. vii. p. 89), and to the memoir by Mr. Starkie Gardner (op. cit. xliii. (1887), p. 270).

To the early observations of Macculloch we are indebted for the record of an interesting fact in connection with the vegetation of the land-surface over which the first lava-flows spread. He figured a vertical tree trunk, imbedded in prismatic basalt, and rightly referred it to some species of fir.[244] This relic may still be seen under the basalt precipices of Gribon. Mr. Gardner found it to be "a large trunk of a coniferous tree, five feet in diameter, perhaps Podocarpus, which has been enveloped, as it stood, in one of the flows of trap to the height of 40 feet. Its solidity and girth evidently enabled it to resist the fire, but it had decayed before the next flow passed over it, for its trunk is a hollow cylinder filled with debris, and lined with the charred wood. A limb of another, or perhaps the same tree, is in a fissure not far off."[245]