Concluding remarks, Patents, &c. The methods already described are those by which commercial hydrochlorate of ammonia is usually if not almost entirely obtained; the various improvements or modifications, from time to time introduced, affecting chiefly the minor details, and the form or size of the apparatus and machinery employed, and not the general principles on which the processes are based. One of the most important of these has for its object the entire removal of the iron present in the crude salt, some of which, if it be not removed before sublimation, is volatilised and contaminates the ultimate product. To obviate this evil, Mr Brewer passes a few bubbles of chlorine through the hot concentrated solution of the salt, previous to its crystallisation; by which the protochloride of iron is converted into the perchloride, which, being acted on by the ammonia always present in the liquor, is precipitated as ferric hydrate, with the formation of a small additional quantity of sal ammoniac. The only precaution necessary is to avoid employing more chlorine gas than is necessary to peroxidise the iron; as beyond this a portion of the ammonia-salt itself is decomposed, with the evolution of nitrogen. The temperature of the liquor is kept up, after the action of the chlorine, until the whole of the brown flocculent oxide of iron has subsided, when it is at once decanted or filtered into the crystallisers.

Another modification which has been adopted in two or three places is to effect neutralisation of the crude ammoniacal liquor by distilling it, and passing the fumes in at the lower end of a hollow shaft or column filled with coke, down which the acid trickles; the resulting solution of sulphate or chloride of ammonium being received in proper cisterns, conveniently situated near the base of the column.

In Mr Spence’s method of obtaining ammonia-salts from gas-liquor or bone-spirit, a series of (usually four) cylindrical boilers, or reservoirs, so placed that the contents of each upper one may be drawn off into the one next below it are employed. Each boiler has an exit-pipe which carries the vapour generated in it to that next above it, whilst that of the highest boiler passes off to a trunk containing the acid necessary to form the salt. The top boiler is connected with the reservoir of gas-liquor (which is already mixed with milk of lime) by a charging pipe furnished with a stop-cock turned by a floating ball, so as to keep the surface of the liquor constantly at the same height. High-pressure steam enters the lower boiler, by which its ammonia is driven through the connecting pipe into the next boiler, and so on in succession, until it leaves the highest boiler in a concentrated state, and thus enters the acid-tank. When this last contains moderately strong hydrochloric or sulphuric acid, the resulting solution of CHLORIDE or SULPHATE OF AMMONIUM (as the case may be) is sufficiently concentrated to be at once run off into the crystallisers. As soon as the liquor in the lowest boiler is exhausted of its ammonia, its contents are drawn off, and replaced by that of the next boiler, which is followed by a like descent throughout the whole series.

Among improvements having for their object the substitution of cheap chlorides[52] for the more expensive commercial acids, may be mentioned those of—

[52] Particularly such chlorides as are the ‘waste or bye products’ of other manufactures.

1. Mr Laming (Patent dated 1843), who employs a strong solution of CHLORIDE OF CALCIUM for converting the ammonia of gas-liquor into the hydrochlorate.

2. Mr Hills (Patent dated 1846) employs CHLORIDE OF MAGNESIUM[53] in the same way; and by a subsequent patent proposes to convert the ammonia eliminated in the distillation of

coal into the hydrochlorate, by mixing CHLORIDE OF MAGNESIUM with the coal in the retorts, or by introducing the chloride into a retort appropriated for the purpose. The heat dispels the chlorine of the chloride, in the form of hydrochloric acid, and this, uniting with the ammoniacal vapour, forms hydrochlorate of ammonia, which is retained in the liquor of the condenser. From this liquor the salt is obtained by evaporation, &c., in the usual way.

[53] Of the Epsom-salt works, &c.

3. Mr Croll (Patent dated 1849) converts the crude ammoniacal vapours that issue with the gas from the common retorts into the hydrochlorate, and obtains a solution of it by passing the gas through a solution of crude CHLORIDE OF MANGANESE[54] (1 cwt. of the salt to about 40 galls. of water), contained in one of the ordinary vessels used for purifying coal-gas. The manganic solution absorbs the ammonia and its salts, converting them into the hydrochlorate, whilst a corresponding proportion of oxide of manganese is precipitated. As soon as the liquor in the purifier is fully saturated, it is drawn off, and replaced by a fresh quantity; whilst the saturated liquor containing the hydrochlorate, after subsidence, or filtration, is evaporated, &c., as before. Crude CHLORIDE OF IRON may be substituted for the chloride of manganese, in the above process: as may also SULPHATE OF MANGANESE, but then the product, of course, will be sulphate of ammonia, instead of the hydrochlorate.