[54] Obtained from the chloride-of-lime works. The portion of the precipitated oxide of manganese saved from the process may be reconverted into the chloride, by mixing 3 parts of it with 4 parts of common salt, and heating the mixture to low redness, scarcely perceptible in the dark, for 2 to 3 hours. 140 lbs. of the calcined mass, with 40 galls. of water, forms a solution that may be again pumped into the purifier.

4. Mr Laming (Patent dated 1850) also proposes the use of various salts and mixtures for retaining and condensing the ammoniacal vapour of coal-gas as it passes from the retorts through the purifiers. Of these the principal are CHLORIDE OF CALCIUM obtained by decomposing chloride of iron by hydrate of lime; CHLORIDE OF IRON, obtained by decomposing sulphate of iron with chloride of sodium; CHLORIDE OF MAGNESIUM; a mixture of SULPHATE OF LIME and SULPHATE OF IRON; or of moist precipitated oxide of iron with carbonate of lime, carbonate of magnesia, or magnesian limestone; or one containing sulphate of magnesia, or chloride of magnesium or calcium, or one or more of them, in combination with oxide of copper, either with or without lime or magnesia, or with both or either of them or their carbonates. These salts, or compounds, are mingled with sawdust, or some other porous substance not acted on by the gas, before being put into the purifiers; and after they become saturated with the vapour, the newly-formed hydrochlorate or sulphate (according to the salt or mixture employed) is washed out of the mass with water.

Besides the usual sources of SAL AMMONIAC (and the other ammonia-salts of commerce) it has been proposed to obtain it from guano, peat, shale, &c., as noticed under Sesquicarbonate of Ammonia (suprà); the substance employed to effect the neutralisation or decomposition of the ammoniacal liquor being, in this case either hydrochloric acid or a chloride.

In Young’s Patent (1841) for ‘obtaining AMMONIA and its SALTS,’ a mixture of 2 parts of guano, and 1 part of hydrate of lime, is distilled in a retort placed vertically, at a moderate heat, gradually increased until the bottom of the retort becomes red hot. The ammoniacal portion of the fumes evolved are absorbed by the cold water contained in a suitable condenser; whilst the other gases eliminated by the process pass off uncondensed. By subsequently passing carbonic acid gas into the liquor of the condenser, a solution of CARBONATE, BICARBONATE, or SESQUICARBONATE of AMMONIA is formed. By nearly filling the condenser with diluted hydrochloric or sulphuric acid, instead of with water, a solution of HYDROCHLORATE or of SULPHATE of AMMONIA is obtained.

Stale urine saturated with hydrochloric acid, or with sulphuric acid diluted with about twice its weight of water, yields SAL AMMONIAC, or SULPHATE OF AMMONIA (according to the acid used) on evaporation.

Hydrochlorate of ammonia is now wholly prepared on the large scale, and never by the dealer or retailer, by whom it is only occasionally refined or purified, in small quantities, for chemical and medical purposes. The sal ammoniac of commerce is found to be sufficiently pure for all its ordinary applications in the arts; but when wanted of greater purity, it is broken into pieces, and resublimed from an earthenware vessel into a large receiver of earthenware or glass. The product (REFINED SAL AMMONIAC, DOUBLE-REFINED S. A.; AMMONIÆ HYDROCHLO′′RAS PU′′RA, SAL AMMONI′ACUS DEPURA′TUS†, L.) is popularly known as FLOWERS OF SAL AMMONIAC (flo′res sa′lis ammoni′aci, L.), from being in a finely divided crystalline state.

The chemically pure chloride of ammonium may be prepared by bringing its gaseous constituents—ammonia and hydrochloric acid—into contact. During the combination much heat, and even light, is generated, and the anhydrous solid salt is precipitated in a minutely divided state, which, under the microscope, is seen to be crystalline. It may be also more easily and conveniently prepared by saturating pure and moderately dilute hydrochloric acid with ammonia or its carbonates, and evaporating the solution until a pellicle forms, when crystals of the chloride separate as the liquid cools. A similar but rather more violent reaction occurs when gaseous chlorine

is brought in contact with gaseous ammonia, or is passed into a nearly saturated solution of ammonia or its carbonates; but in this case nitrogen is evolved at the expense of the ammonia; moreover, the process is attended with danger.

The manufacture of sal ammoniac is usually a distinct business, and is carried on to a very great extent in the neighbourhood of London. Indeed, the London makers now supply the chief portion of that used in England. A large quantity is now, however, made at Manchester and Liverpool. A small quantity is imported from Germany. That from Brunswick is in the form of sugar-loaves. An inferior quality is also imported, in chests, from the East Indies.

The red bands frequently seen in the sal ammoniac of commerce are said to arise from the workmen falling asleep, and allowing the fire to go down, and then suddenly raising the heat too high. (Muspratt.) They consist chiefly of ammonio-chloride of iron.