Another distinct method from the cementation one, by which the carburation of iron is affected, is that in which scrap or malleable iron is mixed with pig or cast iron, this latter being fused with the scrap iron in quantity sufficient to afford such an amount of carbon as is necessary to convert the mixture into steel. Steel made by this operation is entirely homogeneous, the tilting process which precedes the casting of the steel obtained by cementation is therefore unnecessary. The pig iron is placed on the bed (made of refractory sand) of one of Siemens’ regenerative furnaces, heated by gaseous fuel. The temperature in this furnace is so intense that the pig iron becomes perfectly liquid, and, when in this condition, the scrap iron, which has been previously heated to redness in an adjoining refractory furnace, is added, it becomes dissolved by it. Iron may also be carburetted by heating wrought iron bars in carburetted hydrogen. This process, however, is seldom had recourse to.

In the manufacture of Bessemer steel both the carburation and decarburation processes are practised. From 1 to 5 tons of pig or cast iron in a molten state are run from a contiguous blast, cupola, or reverberatory furnace, with an apparatus known as a converter, which is previously heated up to redness by means of coke. The converter is figured under two aspects in the annexed engraving.

This vessel, which is generally made of boiler plates of sheet iron, has an inside lining, consisting of a siliceous fireproof material, and is perforated at the bottom with a number of concentric little openings, which are the orifices of as many little tubes or tuyeres, that lead into

an outside main tube, as shown in the plate. By means of these tubes condensed air is forced into the mass of melted metal, which is soon thrown into violent commotion, and sends out a shower of ignited sparks. The oxide of iron formed at the same time being set into active movement by the incoming blast of air, is brought into intimate contact with every particle of the carbon and silicon contained in the cast iron, and converts the former into carbonic oxide, which burns with its characteristic flame at the mouth of the converter, and the silica into silicic acid, which enters into the slag, and floats, in the form of foam, on the top of the heavier molten iron.

The removal of the carbon (which is known by the discontinuance of the carbonic oxide flame) being thus accomplished, the iron has next to be submitted to the carburetting operation. This is performed by running into the liquid iron in the converter such a quantity of molten pig or cast iron as contains the required proportion of carbon.

The pig iron used for this purpose generally contains, in addition to a large amount of carbon, a very perceptible quantity of manganese. The converter (as shown in the plate) is then by means of the trunnion tilted, so that its contents can be run into a ladle and transferred to the necessary moulds. The time of conversion occupies from ten to twenty minutes.

By Bessemer’s process the sulphur present in the pig iron is almost entirely eliminated; the greater part of the silicon is also separated, together with the carbon, and almost in the same proportion; but the phosphorus is not removed, and, owing to the oxidation of some iron, the amount is actually greater in the finished steel than in the pig iron.[197]

[197] Payen’s ‘Industrial Chemistry,’ edited by B. H. Paul, Ph.D.

Bessemer’s steel is in large demand, and is excellently suited for rails for railroads, cannon, boiler plates, armour plates, and similar heavy material, for the manufacture of which it has largely supplanted wrought iron, but not at all adapted for the manufacture of knives, razors, lancets, or similar instruments, in which a sharp or keen edge is desirable.