Another method, adopted by professional hypnotists, consists in gently moving, in opposite directions, a finger of each hand over the forehead, just above the eyebrows. A soothing and drowsy effect is said to be thereby produced, which ends in tranquil slumber.

Dr Ainslie Hollis contributes some excellent hints on the treatment of wakefulness to the practitioner. He classifies the treatment under two heads—first, the induction of natural sleep, and, secondly, the production of narcosis or artificial rest. The application of mustard plasters to the abdomen generally brings about the first result, producing, according to Schuler, first dilatation, and subsequently contraction of the vessels of the pia mater. Dr Pleyer, of Jena, on the supposition that sleep may be induced by the introduction of the fatigue products of the body, advocates the administration of a solution of lactate of soda. When sleeplessness is the result of brain exhaustion Dr Hollis advocates a tumbler of hot claret negus. The alkalies and alkaline earths, says the ‘Boston Journal of Chemistry,’ are useful when acid dyspepsia is associated with the insomnia. In hot weather, sprinkling the floor of the sleeping apartment with water lessens the irritant properties of the air, adding much to the comfort of the sleepers; possibly the quantity of ozone is at the same time increased. When sleep is broken by severe pain, opium or morphia is of value, bringing not only relief, but producing anæmia of the cerebral vessels; when neuralgia is the cause an injection of morphia under the skin, near the branch of the affected nerve, will have

more effect than by administering it by the mouth. Again, when wakefulness is due to defective cardiac power, digitalis may be useful. Chloral hydrate is supposed to owe its hypnotic effect to its power of diminishing the amount of blood in the brain, and therefore it may be used when sleeplessness arises from the pains of muscular spasm. The bromides, although undoubtedly sedatives, possess very doubtful hypnotic properties. See Supper, &c.

WA′TER. H2O. Syn. Oxide of hydrogen, Protoxide of H.; Aqua, L.; Eau, Fr.; Wasser, Ger.; ὑδωρ, Gr. The ancients regarded water as a simple substance, and as convertible into various mineral and organic products. Earth, air, fire, and water were at one time conceived to be the elementary principles or essences of matter from which all form and substance derived their existence. The true constitution of water was not discovered until about the year 1781, when Cavendish and James Watt, independently and nearly simultaneously, showed it to be a compound of hydrogen and oxygen. Five years, however, before this time (1776), the celebrated Macquer, assisted by Sigaud de la Fond, obtained pure water by the combustion of hydrogen in the air. It has since been satisfactorily demonstrated that hydrogen and oxygen exist in water in the proportion of 1 to 8 by weight, or 2 to 1 by volume; the sp. gr. of hydrogen being to that of oxygen as 1 to 16. One cubic inch of perfectly pure water at 62° Fahr., and 30 inches of the barometer, weighs 252·458 gr.; by which it will be seen that it is 770 times heavier than atmospheric air. Its sp. gr. is 1·0, it being made the standard by which the densities of all solid and liquid bodies are estimated.

The sp. gr. of frozen water (ice) is ·9175, water being 1·0 (Dufour); that of aqueous vapour (steam), ·6252, air being 1·0. Water changes its volume with the temperature; its greatest density is about 3912° Fahr., and its sp. gr. decreases from that point, either way. Water is nearly incompressible. By subjecting water to a pressure of 705 atmospheres, Cailletet found the compressibility to be at the rate of ·0004451 for each atmosphere. Water evaporates at all temperatures; but at 212° under ordinary circumstances, this takes place so rapidly that it boils, and is converted into vapour (steam), whose bulk is nearly 1700 times greater than that of water.

Var. Of these the following are the principal:

Distilled water; Aqua destillata (B. P., Ph. L., E., & D.), L. Obtained by the distillation of common water through a block-tin worm, rejecting the first and last portions that come over. The still employed for this operation should be used for no other purpose; and when great nicety is required, the distillation should be performed in glass or earthenware. It remains limpid on the addition of lime water, chloride of barium, nitrate of silver, oxalate of ammonium, or hydrosulphuric acid. It is the only kind of water that should be employed in chemical and pharmaceutical operations. When distilled water is not at hand, clean filtered or clarified rain water is the only kind that can be successfully substituted.

Natural waters. In respect of wholesomeness, palatability, and general fitness for drinking and cooking, natural waters may be classified in orders of excellence as follows (‘Rivers Pollution Commissioners’ Sixth Report’):

Wholesome1. Spring waterVery palatable.
2. Deep-well water
3. Upland surface waterModerately palatable.
Suspicious4. Stored rain water
5. Surface water from cultivated landsPalatable.
Dangerous6. River water to which sewage gains access
7. Shallow well water