d. For the detection of the principal colouring matters employed in the sophistication of wines, M. Chancel proceeds as follows:—He takes 10 c. c. of wine, and adds 3 c.c. of a dilute solution of subacetate of lead, allowing the mixture to subside for a few minutes to make sure that the precipitation is complete. If this is not the case a slight excess of the reagent is added.

After stirring and heating for a few moments it is thrown on a very small filter, the filtrate collected in a test-tube, and the precipitate washed three or four times in hot water. If the filtrate is coloured magenta is present, and may be sought for by the aid of the spectroscope. But if the wine contains a mere trace of this colour, it is retained in the precipitate, and is sought for in the manner directed below. To discover the colouring matter which may be contained in the plumbic precipitate, it is treated upon the filter with a few c.c. of a solution of carbonate of potassa (2 parts of the dry salt to 100 of water), taking care to repass the same solution several times through the precipitate. Any magenta present is thus extracted, along with carminamic (ammoniacal cochineal) and sulphindigotic acid. The colouring matters of logwood and of alkanet remain undissolved.

With a genuine wine the alkaline liquid takes a very faint yellow, or greenish-yellow tint. For the detection of magenta the filtrate is mixed with a few drops of acetic acid, and it is then shaken up with amylic alcohol. The magenta dissolves in this alcohol with a fine rose tint, and its presence is proved by spectroscopic examination. Carminamic and sulphindigotic acids remain in the aqueous solution, and are decanted off. A couple of drops of sulphuric acid are added, and the mixture is again shaken up with amylic alcohol, which now dissolves the ammoniacal cochineal. It may be detected by the spectroscope. The sulphindigotic acid remains undissolved in the amylic alcohol, and may be found in the blue aqueous residual liquor by means of the

spectroscope. Logwood is most conveniently sought for in a fresh portion of the wine by digestion with a little precipitated carbonate of lime, adding a few drops of lime-water, and filtering. In a natural wine the filtrate has a faint greenish-yellow colour, but if logwood is present it takes a fine red shade, and the absorption bands of logwood may be detected with the spectroscope. On treating the lead precipitate above mentioned with an alkaline sulphide, washing with boiling water, and then treating with alcohol, the colouring matter of alkanet, if present, is dissolved, and may be detected by spectroscopic examination.[271]

[271] ‘Comptes Rendus’, February 19th, 1877 (‘Chem. News’, xxxv, 106).

e. (Dr Dupré.) The colouring matter of pure red wine does not pass through the dialyser. The dialysate from pure wine is therefore colourless, or shows but a slight purplish coloration, such as water would assume on the addition of a small quantity of the wine. A yellow or brownish-yellow dialysate indicates an adulteration with logwood, Brazil wood, or cochineal, the colouring matters of which may be identified by the chemical and optical tests employed for this purpose. The ammoniacal solution of the colouring matter of cochineal yields three well-marked absorption bands.

f. For the detection in wine of fuchsine only, the following methods are given by M. E. Jacquemin: 1. A small quantity of gun cotton is heated for a few minutes in 10-20 c.c. of the wine, and then washed with the water. The nature of the coloration (if any) imparted to the cotton is now identified by means of solution of ammonia, which decolorises rosaniline, but turns archil violet.

2. 100 c.c. of the wine are boiled to expel the alcohol, and then boiled for some time with white Berlin wool, previously moistened with water. The colour imparted to the wool by fuchsine is retained after washing, and may be distinguished from archil by ammonia.

3. 100-200 c.c. of the wine are boiled to expel the alcohol, then allowed to cool, mixed with ammonia in excess, and shaken with ether. By immersing white wool in the ethereal solution, and evaporating the latter, the wool acquires the characteristic colour of fuchsine.

9. Artificial flavouring. This can only be detected by a discriminating and sensitive palate,