Prep. 1. Digest manna in boiling rectified spirit, and filter or decant the solution whilst hot; the mannite crystallises as the liquid cools in tufts of slender, colourless needles.

2. (Ruspini.) Manna, 6 lbs.; cold water (in which the white of an egg has been beaten), 3 lbs.; mix, boil for a few minutes, and strain the syrup through linen whilst hot; the strained liquid will form a semi-crystalline mass on cooling; submit this to strong pressure in a cloth, mix the cake with its own weight of cold water, and again press it; dissolve the cake thus obtained in boiling water, add a little animal charcoal, and filter the mixture into a porcelain dish set over the fire; lastly, evaporate the filtrate to a pellicle, and set the syrup aside to crystallise. Large quadrangular prisms; perfectly white and transparent.

Prop., &c. Mannite has a powerfully sweet and agreeable taste; dissolves in 5 parts of cold water and about half that quantity of boiling water; freely soluble in hot, and slightly so in cold alcohol; fuses by heat without loss of weight; with sulphuric acid it combines to form a new acid compound. It is distinguished from the true sugars by its aqueous solution not being susceptible of the vinous fermentation, and not possessing the property of rotary polarisation. When pure, it is perfectly destitute of purgative properties. It is now extensively imported from Italy, and is chiefly used to cover the taste of nauseous medicines, and as a sweetmeat.

MANURES′. Substances added to soils to increase their fertility. The food of vegetables, as far as their organic structure is concerned, consists entirely of inorganic compounds; and no organised body can serve for the nutrition of vegetables until it has been, by the process of decay, resolved into certain inorganic substances. These are carbonic acid, water, and ammonia, which are well known to be the final products of putrefaction. But even when these are applied to vegetables, their growth will not proceed unless certain mineral substances are likewise furnished in small quantities, either by the soil or the water used to moisten it. Almost every plant, when burned, leaves ashes, which commonly contain silica, potassa, and phosphate of lime; often, also, magnesia, soda, sulphates, and oxide of iron. These mineral bodies appear to be essential to the existence of the vegetable tissues; so that plants will not grow in soils destitute of them, however abundantly supplied with carbonic acid, ammonia, and water. The carbon of plants is wholly derived from

carbonic acid, which is either absorbed from the atmosphere, and from rain water, by the leaves, or from the moisture and air in the soil, by the roots. Its carbon is retained and assimilated with the body of the plant, while its oxygen is given out in the gaseous form; this decomposition being always effected under the influence of light at ordinary temperatures. The hydrogen and oxygen of vegetables, which, when combined with carbon, constitute the ligneous, starchy, gummy, saccharine, oily, and resinous matters of plants, are derived from water chiefly absorbed by the roots from the soil. The nitrogen of vegetables is derived chiefly, if not exclusively, from ammonia, which is supplied to them in rain, and in manures, and which remain in the soil till absorbed by the roots.

According to the celebrated ‘mineral theory’ of agriculture advanced by Liebig a soil is fertile or barren for any given plant according as it contains those mineral substances that enter into its composition. Thus, “the ashes of wheat-straw contain much silica and potassa, whilst the ashes of the seeds contain phosphate of magnesia. Hence, if a soil is deficient in any one of these, it will not yield wheat. On the other hand, a good crop of wheat will exhaust the soil of these substances, and it will not yield a second crop till they have been restored, either by manure or by the gradual action of the weather in disintegrating the subsoil. Hence the benefit derived from fallows and from the rotation of crops.

“When, by an extraordinary supply of any one mineral ingredient, or of ammonia, a large crop has been obtained, it is not to be expected that a repetition of the same individual manure next year will produce the same effect. It must be remembered that the unusual crop has exhausted the soil probably of all the other mineral ingredients, and that they also must be restored before a second crop can be obtained.

“The salt most essential to the growth of the potato is the double phosphate of ammonia and magnesia; that chiefly required for hay is phosphate of lime; while for almost all plants potassa and ammonia are highly beneficial.”

From these principles we “may deduce a few valuable conclusions in regard to the chemistry of agriculture. First, by examining the ashes of a thriving plant, we discover the mineral ingredients which must exist in a soil to render it fertile for that plant. Secondly, by examining a soil, we can say at once whether it is fertile in regard to any plants the ashes of which have been examined. Thirdly, when we know the defects of a soil, the deficient matters may be easily obtained and added to it, unmixed with such as are not required. Fourthly, the straw, leaves, &c., of any plant, are the best manure for that plant, since every vegetable extracts from the soil such matters alone as are essential to it. This important

principle has been amply verified by the success attending the use of wheat-straw, or its ashes, as manure for wheat, and of the chippings of the vines as a manure for the vineyard. When these are used (in the proper quantity) no other manure is required. Fifthly, in the rotation of crops, those should be made to follow which require different materials; or a crop which extracts little or no mineral matter, such as peas, should come after one which exhausts the soil of its phosphates and potassa.” (Liebig.)