b. From binoxide of manganese, as the last. 1 oz. of the pure binoxide yields 44 gr., or 128 cubic inches, of oxygen (Liebig); 1 lb. of good commercial binoxide yields from 1500 to 1600 cubic inches, or from 5 to 6 galls.

c. M. Boussingault has reinvestigated a process, long known, although not usefully applied, by which pure oxygen gas may be obtained from the atmosphere at a trifling cost, so as to enable it to be collected in unlimited quantities and preserved in gasometers, like coal-gas, for application in the arts, manufactures, and sanitation. This process depends upon a peculiar property possessed by the earth baryta, of absorbing atmospheric oxygen at one temperature and evolving it at another; or rather, the ready conversion of hydrate of barium into peroxide of barium by a current of atmospheric air at a dull red heat, and the decomposition of this peroxide, by steam, at a lower temperature, even at 212° Fahr., with reproduction of hydrate of barium, the process being in reality a continuous one. The baryta is mixed with a portion of hydrate of calcium or of magnesium, and the mixture being placed in an appropriate earthen tube heated to dull redness, is oxidised by passing a current of dry atmospheric air over it. As soon as the oxidation is complete, the tube is connected with the gas-holder, and a jet of steam allowed to act upon it; this reconverts the peroxide of barium into hydrate of barium, the excess of oxygen being given off and collected in the gas-holder. The baryta is then again oxidised by a fresh current of air and deoxidized by steam, and the whole process is repeated as frequently as required. One ton of baryta, thus treated, is capable of yielding 2500 cubic feet of pure oxygen every 24 hours; and this, as it does not waste or lose its properties, at the mere cost of the fuel and labour required in the process.

d. From ferrate of potassium, prepared on the large scale. When exposed to moisture or thrown into water, pure oxygen is evolved. This method has been successfully adopted to maintain the air of diving-bells, and of other confined spaces, in a state fit for respiration.

e. The decomposition of sulphuric acid has been recommended by MM. Deville and Debray as a means whereby large quantities of oxygen

gas may be obtained at a low price. Into a tubulated retort are put fragments of fire brick, and upon these, when raised to a full red heat, sulphuric acid is made to fall drop by drop, by passing through an iron tube, which passes through and is luted to the tubulure. The tube reaches to the bottom of the retort, and the acid is poured into it through a bent funnel. The sulphuric acid becomes decomposed into sulphurous anhydride, oxygen, and water. The volatilised products are sent through a spiral condenser, by which the water and any undecomposed acid become liquefied; whilst the sulphurous acid is removed by subsequent washing with water, and oxygen is collected in the usual manner.

f. A process for obtaining oxygen on a large scale, and which has been made the subject of a patent in this country, has been devised by MM. Marechal and Tessié du Mothay. It consists in heating in a current of steam the manganates, permanganates, chromates and ferrates of the alkalies and alkaline earths, and regenerating the residue by passing air over it at a red heat.

g. Mallet procures oxygen in large quantities as follows:—He puts into retorts revolving on horizontal axes, a mixture of cuprous chloride, and kaolin or sand. He moistens this with water, heats it to 100° C., and passes air through the retorts for some hours. His oxygen he obtains from heating the resulting cupric oxychloride to about 400° C.; the aqua residual cuprous chloride becomes converted into oxychloride on cooling 100 kilograms of cuprous chloride, after conversion into oxychloride, about 3 cubic mètres of oxygen.

7. Oxygen gas at the ordinary temperature. Boettger states that when a mixture is made of equal weights of the peroxides of lead and barium, and dilute HNO3 of a strength of 9° Baumé is poured thereon, a current of pure O, free from ozone and antozone, is given off abundantly. This mixture of the two peroxides may be kept dry in a stoppered bottle for any length of time. Boettger also prepares pure oxygen, free from ozone, by submitting permanganate of potassium to a gentle heat.

8. Fleitman[80] has found that when chloride of lime in solution is heated with a small quantity of freshly prepared peroxide of cobalt, it is completely resolved into chloride of calcium and oxygen. A concentrated solution consisting of 35 per cent. of chloride of lime, which must be previously filtered to prevent frothing, yields when heated with 110th to 1 per cent. of peroxide of cobalt, a volume of oxygen from 25 to 30 times as great as that of the liquid, and always rather more than the calculated quantity, probably in consequence of the absorption of oxygen from the air. The remaining peroxide may always be employed again. A like result follows if, instead of the peroxide, an ordinary salt of

cobalt in small quantity be used. Fleitman seeks to explain the reaction on the supposition that there are several peroxides of cobalt, and that the effects produced depend upon the alternate formation and partial reduction of a higher oxide; or on the formation of a cobaltic and a percobaltic hypochlorite, which is subsequently decomposed into cobaltous chloride and oxygen.