6. (Wholesale.)—a. Good raw cane-sugar, 7 lbs., is dissolved in milk (skimmed or stale), 2 galls., and cheese (in a moist or putrescent state), 12 lb., and chalk, 4 lbs., previously rubbed to a cream with water, 112 gall., is then added; the mixture is then exposed in a loosely covered jar, at a temperature of 80° to 86° Fahr., with occasional stirring, for 2 or 3 weeks, or until the whole is converted into a semi-solid mass of crystals of lactate of calcium; this is purified either by draining off and expressing the liquid portion, dissolving the residue in water, and evaporating the solution for crystals; or the whole is put into a stoneware vessel and heated to the boiling-point, by which the casein is coagulated, and the lactate of calcium is dissolved; the solution filtered whilst hot, furnishes the salt in crystals on cooling; these crystals are subsequently dissolved in water, and the filtered solution decomposed by oxalic acid, as before.

b. From cane-sugar, 4 parts; moist cheese, 1 part; chalk, 3 parts; water, 20 parts; as the last.

Obs. Lactic acid prepared by any of the used formulæ may be rendered quite pure by dilution with water, saturation with baryta, evaporation, crystallisation, re-solution in water, and the careful addition of dilute sulphuric acid, as in No. 1; the liquid is, lastly, again filtered and evaporated. Another plan is to convert the acid into lactate of zinc, by the addition of commercial zinc-white, and to redissolve the new salt in water, and then decompose the solution with a stream of sulphuretted hydrogen. In all cases the evaporation should be conducted at a very gentle heat, and, when possible, finished over sulphuric acid, or in vacuo. For particular purposes

this last product must be dissolved in ether, filtered, and the ether removed by a very gentle heat. Care must also be taken to remove the solid lactate of calcium at the proper period from the fermenting liquid, as otherwise it will gradually redissolve and disappear, and on examination the liquid will be found to consist chiefly of a solution of butyrate of calcium.

Prop. The product of the above formulæ is a solution of lactic acid. It may be concentrated in vacuo over a surface of oil of vitriol until it appears as a syrupy liquid of sp. gr. 1·215; soluble in water, alcohol, and ether; exhibiting the usual acid properties, and forming salts with the metals, called LACTATES. Heated in a retort to 266° Fahr.; a small portion distils over, and the residuum on cooling concretes into a yellowish, solid, fusible mass, very bitter, and nearly insoluble in water. This is lactic acid, which has lost half (1 equiv.) of its basic water. By long boiling in water this substance is reconverted into lactic acid. Heated to 480° Fahr., it suffers decomposition, lactide (the anhydrous, concrete, or sublimed lactic acid of former writers) and other products being formed. This new substance may be purified by pressure between bibulous paper and solution in boiling alcohol from which it separates in dazzling white crystals on cooling. By solution in hot water and evaporation to a syrup, it furnishes common lactic acid.

Uses. Lactic acid has been given in dyspepsia, gout, phosphatic urinary deposits, &c. From its being one of the natural constituents of the gastric juice, and from its power of dissolving a considerable quantity of phosphate of calcium, it appears very probable that it may prove beneficial in the above complaints.—Dose, 1 to 5 gr.; in the form of lozenges, or solution in sweetened water.

LAC′TIC FERMENTA′TION. The peculiar change by which saccharine matter is converted into lactic acid. Nitrogenous substances, which in an advanced state of putrefactive change act as alcohol-ferments, often possess, at certain periods of their decay, the property of inducing an acid fermentation in sugar, by which that substance is changed into lactic acid. Thus, the nitrogenised matter of malt, when suffered to putrefy in water for a few days only, acquires the power of acidifying the sugar which accompanies it; whilst in a more advanced state of decomposition it converts, under similar circumstances, the sugar into alcohol. The gluten of grain behaves in the same manner. Wheat flour, made into a paste with water, and left for four or five days in a warm situation, becomes a true lactic acid ferment; but if left a day or two longer, it changes its character, and then acts like common yeast, occasioning the ordinary panary or vinous fermentation. Moist animal membranes, in a slightly decaying condition, often act energetically in developing lactic acid. The rennet employed in the manufacture

of cheese furnishes a well-known example of this class of substances.

In preparing lactic acid from milk, the acid formed, after a time, coagulates and renders insoluble the casein, and the production of the acid ceases. By carefully neutralising the free acid by carbonate of sodium, the casein becomes soluble, and resuming its activity, changes a fresh quantity of sugar into lactic acid, which may be also neutralised, and by a sufficient number of repetitions of this process all the sugar of milk present may, in time, be acidified. This is the rationale of the common process by which lactic acid is obtained. Cane-sugar (probably by previously becoming grape-sugar) and the sugar of milk both yield lactic acid; the latter, however, most readily, the grape-sugar having a strong tendency towards the alcoholic fermentation. If the lactic fermentation be allowed to proceed too far, the second stage of the process of transmutation commences, hydrogen gas and carbonic acid gas are evolved, and the butyric fermentation, by which oily acids are formed, is established.

Pasteur ascribes the lactic fermentation to the agency of a specific kind of ferment, which occurs in the form of a greyish layer deposited upon the surface of the sediment formed during the fermentation of the sugar, casein, and chalk (see Lactic acid, b), in the manufacture of lactic acid.