This truth forces itself upon thoughtful zoologists and zootomists with such cogency, that unless their mind is at the same time purified by a deeper philosophy, it may lead them into strange errors. Now this actually happened to a very eminent zoologist, the immortal De Lamarck, who has acquired everlasting fame by his discovery of the classification of animals in vertebrata and non-vertebrata, so admirable in depth of view. For he quite seriously maintains and tries to prove[230] at length, that the shape of each animal species, the weapons peculiar to it, and its organs of every sort destined for outward use, were by no means present at the origin of that species, but have on the contrary come into being gradually in the course of time and through continued generation, in consequence of the exertions of the animal's will, evoked by the nature of its position and surroundings, through its own repeated efforts and the habits to which these gave rise. Aquatic birds and mammalia that swim, he says, have only become web-footed through stretching their toes asunder in swimming; moor-fowl acquired their long legs and necks by wading; horned cattle only gradually acquired horns because as they had no proper teeth for combating, they fought with their heads, and this combative propensity in course of time produced horns or antlers; the snail was originally, like other mollusca, without feelers; but out of the desire to feel the objects lying before it, these gradually arose; the whole feline species acquired claws only in course of time, from their desire to tear the flesh of their prey, and the moveable coverings of those claws, from the necessity of protecting them in walking without being prevented from using them when they wished; the giraffe, in the barren, grassless African deserts, being reduced for its food to the leaves of lofty trees, stretched out its neck and forelegs until at last it acquired its singular shape, with a height in front of twenty feet, and thus De Lamarck goes on describing a multitude of animal species as arising according to the same principle, in doing which he overlooks the obvious objection which may be made, that long before the organs necessary for its preservation could have been produced by means of such endeavours as these through countless generations, the whole species must have died out from the want of them. To such a degree may we be blinded by a hypothesis which has once laid hold of us! Nevertheless in this instance the hypothesis arose out of a very correct and profound view of Nature: it is an error of genius, which in spite of all the absurdity it contains, still does honour to its originator. The true part of it belongs to De Lamarck, as an investigator of Nature; he saw rightly that the primary element which has determined the animal's organisation, is the will of that animal itself. The false part must be laid to the account of the backward state of Metaphysics in France, where the views of Locke and of his feeble follower, Condillac, in fact still hold their ground and therefore bodies are held to be things in themselves, Time and Space qualities of things in themselves; and where the great doctrine of the Ideal nature of Space and of Time and of all that is represented in them, which has been so extremely fertile in its results, has not yet penetrated. De Lamarck therefore could not conceive his construction of living beings otherwise than in Time, through succession. Errors of this sort, as well as the gross, absurd, atomic theory of the French and the edifying physico-theological considerations of the English, have been banished for ever from Germany by Kant's profound influence. So salutary was the effect produced by this great mind, even upon a nation capable of subsequently forsaking him to run after charlatanism and empty bombast. But the thought could never enter into De Lamarck's head, that the animal's will, as a thing in itself, might lie outside Time, and in this sense be prior to the animal itself. Therefore he assumes the animal to have first been without any clearly defined organs, but also without any clearly defined tendencies, and to have been equipped only with perception. Through this it learns to know the circumstances in which it has to live and from that knowledge arise its desires, i.e. its will, from which again spring its organs or definite embodiment; this last indeed with the help of generation and therefore in boundless Time. If De Lamarck had had the courage to carry out his theory fully, he ought to have assumed a primary animal[231] which, to be consistent, must have originally had neither shape nor organs, and then proceeded to transform itself according to climate and local conditions into myriads of animal shapes of all sorts, from the gnat to the elephant.—But this primary animal is in truth the will to live; as such however, it is metaphysical, not physical. Most certainly the shape and organisation of each animal species has been determined by its own will according to the circumstances in which it wished to live; not however as a thing physical in Time, but on the contrary as a thing metaphysical outside Time. The will did not proceed from the intellect, nor did the intellect exist, together with the animal, before the will made its appearance as a mere accident, a secondary, or rather tertiary, thing. It is on the contrary the will which is the prius, the thing in itself: its phenomenon (mere representation in the cognitive intellect and its forms of Space and Time) is the animal, fully equipped with all its organs which represent the will to live in those particular circumstances. Among these organs is the intellect also—knowledge itself—which, like the rest of those organs, is exactly adapted to the mode of life of each animal; whereas, according to De Lamarck, it is the will which arises out of knowledge. Behold the countless varieties of animal shapes; how entirely is each of them the mere image of its volition, the evident expression of the strivings of the will which constitute its character! Their difference in shape is only the portrait of their difference in character. Ferocious animals, destined for combat and rapine, appear armed with formidable teeth and claws and strong muscles; their sight is adapted for great distances, especially when they have to mark their prey from a dizzy height, as is the case with eagles and condors. Timid animals, whose will it is to seek their safety in flight instead of contest, present themselves with light, nimble legs and sharp hearing in lieu of all weapons; a circumstance which has even necessitated a striking prolongation of the outer ear in the most timid of them all, the hare. The interior corresponds to the exterior: carnivorous animals have short intestines; herbivorous animals long ones, suited to a protracted assimilation. Vigorous respiration and rapid circulation of the blood, represented by appropriate organs, always accompany great muscular strength and irritability as their necessary conditions, and nowhere is contradiction possible. Each particular striving of the will presents itself in a particular modification of shape. The abode of the prey therefore has determined the shape of its pursuer: if that prey takes refuge in regions difficult of access, in remote hiding places, in night or darkness, the pursuer assumes the form best suited to those circumstances, and no shape is rejected as too grotesque by the will to live, in order to attain its ends. The cross-bill (loxia curvirostra) presents itself with this abnormal form of its organ of nutrition, in order to be able to extract the seeds out of the scales of the fir-cone. Moor-fowls appear equipped with extra long legs, extra long necks and extra long beaks, in short, the strangest shapes, in order to seek out reptiles in their marshes. Then we have the ant-bear with its body four feet long, its short legs, its strong claws, and its long, narrow, toothless muzzle provided with a threadlike, glutinous tongue for the purpose of digging out the white ants from their nests. The pelican goes fishing with a huge pouch under its beak in which to pack its fish, when caught. In order to surprise their prey while asleep in the night, owls fly out provided with enormous pupils which enable them to see in the dark, and with very soft feathers to make their flight noiseless and thus permit them to fall unawares upon their sleeping prey without awakening it by their movements. Silurus, gymnotus and torpedo bring a complete electric apparatus into the world with them, in order to stun their prey before they can reach it; and also as a defence against their own pursuers. For wherever anything living breathed, there immediately came another to devour it,[232] and every animal is in a way designed and calculated throughout, down to the minutest detail, for the purpose of destroying some other animal. Ichneumons, for instance, among insects, lay their eggs in the bodies of certain caterpillars and similar larvæ, in which they bore holes with their stings, in order to ensure nourishment for their future brood. Now those kinds which feed on larvæ that crawl about freely, have short stings not more than about one-third of an inch long, whereas pimpla manifestator, which feeds upon chelostoma maxillosa, whose larvæ lie hidden in old trees at great depth and are not accessible to it, has a sting two inches long; and the sting of the ichneumon strobillæ which lays its eggs in larvæ dwelling in fir-cones, is nearly as long. With these stings they penetrate to the larva in which they bore a hole and deposit one egg, whose product subsequently devours this larva.[233] Just as clearly does the will to escape their enemies manifest itself in the defensive equipment of animals that are the objects of pursuit. Hedgehogs and porcupines raise up a forest of spears; armadillos, scaly ant-eaters and tortoises appear cased from head to foot in armour which is inaccessible to tooth, beak or claw; and so it is, on a smaller scale, with the whole class of crustacea. Others again seek protection by deceiving their pursuers rather than by resisting them physically: thus the sepia has provided itself with materials for surrounding itself with a dark cloud on the approach of danger. The sloth is deceptively like its moss-clad bough, and the frog its leaf; and many insects resemble their dwelling-places. The negro's louse is black;[234] so, to be sure, is our flea also; but the latter, in providing itself with an extremely powerful apparatus for making irregular jumps to a considerable distance, trusted to these for protection.—We can however make the anticipation in all these arrangements more intelligible to ourselves by the same anticipation which shows itself in the mechanical instincts of animals. Neither the young spider nor the ant-lion know the prey for which they lay traps, when they do it for the first time. And it is the same when they are on the defensive. According to Latreille, the insect bombex kills the parnope with its sting, although it neither eats it nor is attacked by it, simply because the parnope will lay its eggs in the bombex's nest, and by doing this will interfere with the development of its eggs; yet it does not know this. Anticipations of this kind once more confirm the ideal nature of Time, which indeed always becomes manifest as soon as the will as thing in itself is in question. Not only with respect to the points here mentioned, but to many others besides, the mechanical instincts and physiological functions of animals serve to explain each other mutually, because the will without knowledge is the agent in both.
As the will has equipped itself with every organ and every weapon, offensive as well as defensive, so has it likewise provided itself in every animal shape with an intellect, as a means of preservation for the individual and the species. It was precisely in this account that the ancients called the intellect the ἡγεμονικόν, i.e. the guide and leader. Accordingly the intellect, being exclusively destined to serve the will, always exactly corresponds to it. Beasts of prey stood in greater need of intellect, and in fact have more intelligence, than herbivorous animals. The elephant certainly forms an exception, and so does even the horse to a certain extent; but the admirable intelligence of the elephant was necessary on account of the length of its life (200 years) and of the scantiness of its progeny, which obliged it to provide for a longer and surer preservation of the individual: and this moreover in countries teeming with the most rapacious, the strongest and the nimblest beasts of prey. The horse too has a longer life and a scantier progeny than the ruminants, and as it has neither horns, tusks, trunk, nor indeed any weapon save perhaps its hoofs, it needed greater intelligence and swiftness in order to elude pursuit. Monkeys needed their extraordinary intelligence, partly because of the length of their life, which even in the moderate-sized animal extends to fifty years; partly also because of their scanty progeny, which is limited to one at a time, but especially because of their hands, which, to be properly used, required the direction of an understanding. For monkeys depend upon their hands, not only for their defence by means of outer weapons such as sticks and stones, but also for their nourishment, this last necessitating a variety of artificial means and a social and artificial system of rapine in general, the passing from hand to hand of stolen fruit, the placing of sentinels, &c. &c. Add to this, that it is especially in their youth, before they have attained their full muscular development, that this intelligence is most prominent. In the pongo or ourang-outang for instance, the brain plays a far more important part and the understanding is much greater during its youth than at its maturity, when the muscular powers having attained full development, they take the place of the proportionately declining intellect. This holds good of all sorts of monkeys, so that here therefore the intellect acts for a time vicariously for the yet undeveloped muscular strength. We find this process discussed at length in the "Résumé des Observations de Fr. Cuvier sur l'instinct et l'intelligence des animaux," par Flourens (1841), from which I have quoted the whole passage referring to this question in the second volume of my chief work, at the end of the thirty-first chapter, and this is my only reason for not repeating it here. On the whole, intelligence gradually increases from the rodents[235] to the ruminants, from the ruminants to the pachyderms, and from these again to the beasts of prey and finally to the quadrumana, and anatomy shows a gradual development of the brain in similar order which corresponds to this result of external observation. (According to Flourens and Fr. Cuvier.)[236] Among the reptiles, serpents are the most intelligent, for they may even be trained; this is so, because they are beasts of prey and propagate more slowly than the rest—especially the venomous ones. And here also, as with the physical weapons, we find the will everywhere as the prius; its equipment, the intellect, as the posterius. Beasts of prey do not hunt, nor do foxes thieve, because they have more intelligence; on the contrary, they have more intelligence, just as they have stronger teeth and claws too, because they wished to live by hunting and thieving. The fox even made up at once for his inferiority in muscular power and strength of teeth by the extraordinary subtility of his understanding. Our thesis is singularly illustrated by the case of the bird dodo or dronte (didus ineptus) on the island of Mauritius, whose species, it is well known, has died out, and which, as its Latin name denotes, was exceedingly stupid, and this explains its disappearance; so that here it seems indeed as if Nature had for once gone too far in her lex parsimoniæ and thereby in a sense brought forth an abortion in the species, as she so often does in the individual, which was unable to subsist, precisely because it was an abortion. If, on this occasion, anyone were to raise the question as to whether Nature ought not to have provided insects with at least sufficient intelligence to prevent them from flying into the flame of a candle, our answer would be: most certainly; only she did not know that men would make candles and light them, and natura nihil agit frustra. Insect intelligence is therefore only insufficient where the surroundings are artificial.[237]
Everywhere indeed intelligence depends in the first instance upon the cerebral system, and this stands in a necessary relation to the rest of the organism; therefore cold-blooded animals are greatly inferior to warm-blooded ones, and invertebrate animals to vertebrata. But the organism is precisely nothing but the will become visible, to which, as that which is absolutely prius, everything constantly refers. The needs and aims of that will give in each phenomenon the rule for the means to be employed, and these means must harmonize with one another. Plants have no self-consciousness because they have no power of locomotion; for of what use would self-consciousness be to them unless it enabled them to seek what was salutary and flee what was noxious to them? And conversely, of what use could power of locomotion be to them, as they have no self-consciousness with which to guide it. The inseparable duality of Sensibility and Irritability does not yet appear therefore in the plant; they continue slumbering in the reproductive force which is their fundament, and in which alone the will here objectifies itself. The sun-flower, and every other plant, wills for light; but as yet their movement towards light is not separate from their apprehension of it, and both coincide with their growth.—Human understanding, which is so superior to that of all other beings, and is assisted by Reason (the faculty for non-perceptible representations, i.e. for conceptions; reflection, thinking faculty), is nevertheless only just proportionate, partly to Man's requirements, which greatly surpass those of animals and multiply to infinity; partly to his entire lack of all natural weapons and covering, and to his relatively weaker muscular strength, which is greatly inferior to that of monkeys of his own size;[238] lastly also, to the slowness with which his race multiplies and the length of his childhood and life, which demand secure preservation of the individual. All these great requirements had to be satisfied by means of intellectual powers, which, for this reason, predominate in him. But we find the intellect secondary and subordinate everywhere, and destined exclusively to serve the purposes of the will. As a rule too, it always remains true to its destiny and subservient to the will. How nevertheless, it frees itself in particular instances from this bondage through an abnormal preponderance of cerebral life, whereby purely objective cognition becomes possible which may be enhanced to genius, I have shown at length in the æsthetic part of my chief work.[239]
Now, after all these reflections upon the precise agreement between the will and the organisation of each animal, if we inspect a well-arranged osteological collection from this point of view, it will certainly seem to us as if we saw one and the same being (De Lamarck's primary animal, or, more properly, the will to live) changing its shape according to circumstances, and thus producing all this multiplicity of forms out of the same number and arrangement of its bones, by prolonging and curtailing, strengthening and weakening them. This number and arrangement of the bones, which Geoffroy de St. Hilaire[240] called the anatomical element, continues, as he has thoroughly shown, in all essential points unchanged: it is a constant magnitude, something which is absolutely given beforehand, irrevocably fixed by an unfathomable necessity—an immutability which I should compare with the permanence of matter in all physical and chemical changes: but to this I shall soon return. Conjointly with this immutability of the anatomical element, we have the greatest susceptibility to modification, the greatest plasticity and flexibility of these same bones with reference to size, shape and adaptation to different purposes, all which we see determined by the will with primary strength and freedom according to the aims prescribed to it by external circumstances: it makes out of these materials whatever its necessity for the time being requires. If it desires to climb about in trees, it catches at the boughs at once with four hands, while it stretches the ulva and radius to an excessive length and immediately prolongs the os coccygis to a curly tail, a yard long, in order to hang by it to the boughs and swing itself from one branch to another. If, on the other hand, it desires to crawl in the mud as a crocodile, to swim as a seal, or to burrow as a mole, these same arm-bones are shortened till they are no longer recognisable; in the last case the metacarpus and phalanges are enlarged to disproportionately large shovel-paws, to the prejudice of the other bones. But if it wishes to fly through the air as a bat, not only are the os humeri, radius and alnus prolonged in an incredible manner, but the usually small and subordinate carpus, metacarpus and phalanges digitorum expand to an immense length, as in St. Anthony's vision, outmeasuring the length of the animal's body, in order to spread out the wing-membrane. If, in order to browse upon the tops of very tall African trees, it has, as a giraffe, placed itself upon extraordinarily high fore-legs, the same seven vertebræ of the neck, which never vary as to number and which, in the mole, were contracted so as to be no longer recognisable, are now prolonged to such a degree, that here, as everywhere else, the neck acquires the same length as the fore-legs, in order to enable the head to reach down to drinking-water. But where, as is the case when it appears as the elephant, a long neck could not have borne the weight of the enormous, unwieldy head—a weight increased moreover by tusks a yard long—the neck remains short, as an exception, and a trunk is let down as an expedient, to lift up food and draw water from below and also to reach up to the tops of trees. In accordance with these transformations, we see in all of them the skull, the receptacle containing the understanding, at the same time proportionately expand, develop, curve itself, as the mode of procuring nourishment becomes more or less difficult and requires more or less intelligence; and the different degrees of the understanding manifest themselves clearly to the practised eye in the curves of the skull.
Now, in all this, that anatomical element we have mentioned above as fixed and invariable, certainly remains in so far an enigma, as it does not come within the teleological explanation, which only begins after the assumption of that element; since the intended organ might in many cases have been rendered equally suitable for its purpose even with a different number and disposition of bones. It is easy to understand, for instance, why the human skull should be formed out of eight bones: that is, to enable them to be drawn together by the fontanels during birth; but we do not see why a chicken which breaks through its egg-shell should necessarily have the same number of skull-bones. We must therefore assume this anatomical element to be based, partly on the unity and identity of the will to live in general, partly on the circumstance, that the archetypal forms of animals have proceeded one from the other,[241] wherefore the fundamental type of the whole race was preserved. It is this anatomical element which Aristotle means by his ἀναγκαία φύσις, and the mutability of its shapes according to different purposes he calls τὴν κατὰ λόγον φύσιν,[242] and explains by it how the material for upper incisors has been employed for horns in horned cattle. Quite rightly: since the only ruminants which have no horns, the camel and the musk-ox, have upper incisors, and these are wanting in all horned ruminants.
No other explanation or assumption enables us nearly as well to understand either the complete suitableness to purpose and to the external conditions of existence I have here shown in the skeleton, or the admirable harmony and fitness of internal mechanism in the structure of each animal, as the truth I have elsewhere firmly established: that the body of an animal is precisely nothing but the will itself of that animal brought to cerebral perception as representation—through the forms of Space, Time and Causality—in other words, the mere visibility, objectivity of Will. For, if this is once pre-supposed, everything in and belonging to that body must conspire towards the final end: the life of this animal. Nothing superfluous, nothing deficient, nothing inappropriate, nothing insufficient or incomplete of its kind, can therefore be found in it; on the contrary, all that is required must be there, and just in the proportion needed, never more. For here artist, work and materials are one and the same. Each organism is therefore a consummate master-piece of exceeding perfection. Here the will did not first cherish the intention, first recognise the end and then adapt the means to it and conquer the material; its willing was rather immediately the aim and immediately the attainment of that aim; no foreign appliances needing to be overcome were wanted—willing, doing and attaining were here one and the same. Thus the organism presents itself as a miracle which admits of no comparison with any work of human artifice wrought by the lamplight of knowledge.[243]
Our admiration for the consummate perfection and fitness for their ends in all the works of Nature, is at the bottom based upon our viewing them in the same light as we do our own works. In these, in the first place, the will to do the work and the work are two different things; then again two other things lie between these two: firstly, the medium of representation, which, taken by itself, is foreign to the will, through which the will must pass before it realizes itself here; and secondly the material foreign to the will here at work, on which a form foreign to it has to be forced, which it resists, because the material already belongs to another will, that is to say, to its own nature, its forma substantialis, the (Platonic) idea, expressed by it: therefore this material has first to be overcome, and however deeply the artificial form may have penetrated, will always continue inwardly resisting. It is quite a different thing with Nature's works, which are not, like our own, indirect, but on the contrary, direct manifestations of the will. Here the will acts in its primordial nature, that is, unconsciously. No mediating representation here separates the will and the work: they are one. And even the material is one with them: for matter is the mere visibility of the will. Therefore here we find Matter completely permeated by Form; or, better still, they are of quite the same origin, only existing mutually one for the other; and in so far they are one. That we separate them in works of Nature as well as in works of Art, is a mere abstraction. Pure Matter, absolutely without Form or quality, which we think as the material of a product of Nature, is merely an ens rationis and cannot enter into any experience: whereas the material of a work of Art is empirical Matter, consequently already has a Form. The [distinctive] character of Nature's products is the identity of form and substance; that of products of Art the diversity of these two.[244] It is because Matter is the mere visibility of Form in Nature's products, that, even empirically, we see Form appear as a mere production of Matter, bursting forth from its inside in crystallisation, in vegetable and animal generatio æquivoca, which last cannot be doubted, at any rate in the epizoa.[245]—For this reason we may even assume that nowhere, either on any planet or satellite, will Matter come to a state of endless repose, but rather that its inherent forces (i.e. the will, whose mere visibility it is) will always put an end again to the repose which has commenced, always awaking again from their sleep, to resume their activity as mechanical, physical, chemical, organic forces; since at all times they only wait for the opportunity to do so.
But if we want to understand Nature's proceeding, we must not try to do it by comparing her works with our own. The real essence of every animal form, is an act of the will outside representation, consequently outside its forms of Space and Time also; which act, just on that account, knows neither sequence nor juxtaposition, but has, on the contrary, the most indivisible unity. But when our cerebral perception comprehends that form, and still more when its inside is dissected by the anatomical knife, then that which originally and in itself was foreign to knowledge and its laws, is brought under the light of knowledge; but then also, it has to present itself in conformity with the laws and forms of knowledge. The original unity and indivisibility of that act of the will, of that truly metaphysical being, then appears divided into parts lying side by side and functions following one upon another, which all nevertheless present themselves as connected together in closest relationship one to another for mutual help and support, as means and ends one to the other. The understanding, in thus apprehending these things, now perceives the original unity re-establishing itself out of a multiplicity which its own form of knowledge had first brought about, and involuntarily taking for granted that its own way of perceiving this is the way in which this animal form comes into being, it is now struck with admiration for the profound wisdom with which those parts are arranged, those functions combined. This is the meaning of Kant's great doctrine, that Teleology is brought into Nature by our own understanding, which accordingly wonders at a miracle of its own creation.[246] If I may use a trivial simile to elucidate so sublime a matter, this astonishment very much resembles that of our understanding when it discovers that all multiples of 9, when their single figures are added together, give as their product either the number 9 or one whose single figures again make 9; yet it is that very understanding itself which has prepared for itself this surprise in the decimal system. According to the Physico-theological argument, the actual existence of the world has been preceded by its existence in an intellect: if the world is designed for an end, it must have existed as representation before it came into being. Now I say, on the contrary, in Kant's sense: if the world is to be representation, it must present itself as designed for an end; and this only takes place in an intellect.
It undoubtedly follows from my doctrine, that every being is its own work. Nature, which is incapable of falsehood and is as naïve as genius, asserts the same thing downright; since each being merely kindles the spark of life at another exactly similar being, and then makes itself before our eyes, taking the materials for this from outside, form and movement from its own self: this process we call growth and development. Thus, even empirically, each being stands before us as its own work. But Nature's language is not understood because it is too simple.