therefore, is now not compelled to wait for accidental variations but produces such itself, whenever the required elements for the purpose are present. Now, where it is a question simply of the enlargement or diminution of a part, or of a part of a part, these variations are always present, and in modifications of quality they are at least present in many cases.

This is the only way in which I can see a possibility of explaining phenomena of mimicry—the imitation of one species by another. The useful variations must be produced in the germ itself by internal selection-processes if this class of facts is to be rendered intelligible. I refer to the mimicry of an exempt species by two or three other species, or, the aping of different exempt patterns by one species in need of protection. It must be conceded to Darwin and Wallace that some degree of similarity between the copy and the imitation was present from the start, at least in very many cases;[[17]] but in no case would this have been sufficient had not slight shades of coloring afforded some hold for personal selection, and in this way furnished a basis for independent germinal selection acting only in the direction indicated. It would have been impossible for such a minute similarity in the design, and particularly in the shades of the coloration, ever to have arisen, if the process of adaptation rested entirely

on personal selection. Were this so, a complete scale of the most varied shades of color must have been continually presented as variations in every species, which certainly is not the case. For example, when the exempt species Acræa Egina, whose coloration is a brick-red, a color common only in the genus Acræa, is mimicked by two other butterflies, a Papilio and a Pseudacræa, so deceptively that not only the cut of the wings and the pattern of their markings, but also that precise shade of brick-red, which is scarcely ever met with in diurnal butterflies, are produced, assuredly such a result cannot rest on accidental, but must be the outcome of a definitely directed, variation, produced by utility. We cannot assume that such a coloration has appeared as an accidental variation in just and in only these two species, which fly together with the Acræa in the same localities of the same country and same part of the world—the Gold Coast of Africa. It is conceivable, indeed, that non-directed variation should have accidentally produced this brick-red in a single case, but that it should have done so three times and in three species, which live together but are otherwise not related, is a far more violent and improbable assumption than that of a causal connexion of this coincidence. Now hundreds of cases of such mimicry exist in which the color-tints of the copy are met with again in more or less precise and sometimes in exceedingly exact imitations, and there are thousands of cases in which the color-tint of a bark, of a definite leaf, of a definite blossom, is repeated exactly in the protectively colored insect. In such cases there can be no question of accident, but the variations presented to personal selection must themselves have been produced by the principle of the survival of the

fit! And this is effected, as I am inclined to believe, through such profound processes of selection in the interior of the germ-plasm as I have endeavored to sketch to you to-day under the title of germinal selection.

I am perfectly well aware how schematic my presentation of this process is, and must be at present, owing mainly to our inability to gain exact knowledge concerning the fundamental germinal constituents here assumed. But I regard its existence as assured, although I by no means underrate the fact that eminent thinkers, like Herbert Spencer, contest its validity and believe they are warranted in assuming a germ which is composed of similar units. I strongly doubt whether even so much as a formal explanation of the phenomena can be arrived at in this manner. So far as direct observation is concerned, the two theories stand on an equal footing, for neither my dissimilar, nor Spencer's similar, units of germinal substance can be seen directly.

The attempt has been recently made to discredit my Anlagen, or constitutional germ-elements, on the ground that they are simply a subtilised reproduction of Bonnet's old theory of preformation.[[18]] This

impression is very likely based upon ignorance of the real character of Bonnet's theory. I will not go into further details here, particularly as Whitman, in several excellently written and finely conceived essays, has recently afforded opportunity for every one to inform himself on the subject. My determinants and groups of determinants have nothing to do with the preformations of Bonnet; in a sense they are the exact opposites of them; they are simply those living parts of the germ whose presence determines the appearance of a definite organ of a definite character in

the course of normal evolution. In this form they appear to me to be an absolutely necessary and unavoidable inference from the facts. There must be contained in the germ parts that correspond to definite parts of the complete organism, that is, parts that constitute the reason why such other parts are formed.

It is conceded even by my opponents that the reason why one egg produces a chicken and another a duck is not to be sought in external conditions, but lies in a difference of the germinal substance. Nor can they deny that a difference of germinal substance must also constitute the reason why a slight hereditary difference should exist between two filial organisms. Should there now, in a possible instance, be present between them a second, a third, a fourth, or a hundredth difference of hereditary character, each of which could vary from the germ, then, certainly, some second, third, fourth, or hundredth part of the germ must have been different; for whence, otherwise, should the heredity of the differences be derived, seeing that external influences affecting the organism in the course of evolution induce only non-transmissible and transient deviations? But the fact that every complex organism is actually composed of a very large number of parts independently alterable from the germ, follows not only from the comparison of allied species, but also and principally from the experiments long conducted by man in artificial selection, and by the consequent and not infrequent change of only a single part which happens to claim his interest; for example, the tail-feathers of the cock, the fruit of the gooseberry, the color of a single feather or group of feathers, and so on. But a still more cogent proof is furnished by the degeneration of parts grown

useless, for this process can be carried on to almost any extent without the rest of the body necessarily becoming involved in sympathetic alteration. Whole members may become rudimentary, like the hind limbs of the whale, or it may be only single toes or parts of toes; the whole wing may degenerate in the females of a butterfly species, or only a small circular group of wing-scales, in the place of which a so-called "window" arises. A single vein of the wing also may degenerate and disappear, or the process may affect only a part of it, and this may happen in one sex only of a species. In such cases the rest of the body may remain absolutely unaltered; only a stone is taken out of the mosaic.