Not only do different species grow more or less rapidly in height and girth, but there is in each species a difference in the rate of growth during different periods of life, and a difference in the persistence of growth.

It stands to reason that trees grow differently in different soils and situations, and hence we can not compare different species with respect to their rate of growth except as they grow under the same conditions.

Thus the black walnut may grow as fast as or faster than the ash on a rich, deep, moist, warm soil, but will soon fall to the rear in a wetter, colder, and shallower soil.

Given the same conditions, some species will start on a rapid upward growth at once, like the poplars, aspen, locust, and silver maple, making rapid progress (the most rapid from their tenth to their fifteenth year), but decreasing soon in rate and reaching their maximum height early. Others, like the spruce, beech, and sugar maple, will begin slowly, often occupying several, sometimes as many as 10 to 15, years before they appear to grow at all, their energy all going into root growth. Then comes a period of more and more accelerated growth, which reaches its maximum rate at 25 or 30 years; and when the cottonwood or aspen has reached the end of its growth in height the spruce or pine is still at its best rate, and continues to grow for a long time at that rate; in later life the rate decreases, yet height growth sometimes does not cease altogether for centuries. As a rule, the light-needing species are the ones which show the rapid height growth at the start, while the shade-enduring are slow at the start, but persistent growers.

This fact is important in explaining the alternations of forest growth in nature; the persistent shade-enduring species crowd out the light-needing, and the latter rapidly take possession of any openings that fire or storm has made. It is also important with reference to the management of wood crops and starting of mixed plantations; the light-needing species must be mixed only with such shade-enduring species as are slower growers than themselves.

The diameter growth shows also periodic changes in its rate, and is, of course, influenced in the same way by soil, climate, and light conditions, as the height growth.

In the juvenile or brush stage, lasting 6 to 10 years in light-needing and 20 to 40 years in shade-enduring species, the diameter grows comparatively little, all energy being directed to height growth and root growth. When the crown has been definitely formed, more food material is available for wood formation, and the increase in foliage is accompanied by a more rapid increase of trunk diameter; in favorable situations, the highest rate occurs between the fortieth and sixtieth years; in the poorer situations, between the fiftieth and eightieth years, which rate continues for some time. Then comes a period of slower rate, which finally in old age dwindles down almost to zero.

But neither the diameter growth nor the width of the annual rings alone tells us directly what amount of wood is forming. The outer rings, being laid over a larger circumference, although thinner than the preceding rings, may yet have greater cubic contents. The statements of diameter growth are, therefore, misleading if we are interested in knowing how much wood is forming.

Accordingly the growth in volume must be considered separately, as determined by the enlargement of the cross-section area and the height. The growth in volume or mass accretion is quite small in young trees, so that when wood is cut young the smallest amount of crop per year is harvested, while, if it is allowed to grow, an increase more than proportionate to the number of years may be obtained.

Only when the tree has a fully developed crown does it begin to make much wood. Its volume growth progresses then at a uniform rate, and continues to do so for decades, and sometimes for a century or more.