That soil conditions and climatic conditions also modify crown development and shade endurance has been well recognized abroad, but in our country this influence is of much more importance on account of the great variation in those conditions. Thus the box elder, an excellent shader in certain portions of the West, is a failure as soil cover in others where it nevertheless will grow.

We see, then, that in determining the shading value as well as the shade endurance of one species in comparison with another, with reference to forestry purposes, not only soil and climate but also the character of foliage and its length of season must be considered.

PHYSIOLOGY OF TREE GROWTH.

As we have seen, root and foliage are the main life organs of the tree. The trunk and branches serve to carry the crown upward and expose it to the light, which is necessary in order to prepare the food and increase the volume of the tree, and also as conductors of food materials up and down between root and foliage. A large part of the roots, too, aside from giving stability to the tree, serve only as conductors of water and food material; only the youngest parts, the fibrous roots, beset with innumerable fine hairs, serve to take up the water and minerals from the soil. These fine roots, root hairs, and young parts are therefore the essential portion of the root system. A tree may have a fine, vigorous-looking root system, yet if the young parts and fibrous roots are cut off or allowed to dry out, which they readily do—some kinds more so than others—thereby losing their power to take up water, such a tree is apt to die. Under very favorable moisture and temperature conditions, however, the old roots may throw out now sprouts and replace the fibrous roots. Some species, like the willows, poplars, locusts, and others, are especially capable of doing so. All trees that "transplant easily" probably possess this capacity of renewing the fibrous roots readily, or else are less subject to drying out. But it may be stated as a probable fact that most transplanted trees which die soon after the planting do so because the fibrous roots have been curtailed too much in taking up, or else have been allowed to dry out on the way from the nursery or forest to the place of planting; they were really dead before being set. Conifers—pines, spruces, etc.—are especially sensitive; maples, oaks, catalpas, and apples will, in this respect, stand a good deal of abuse.

Hence, in transplanting, the first and foremost care of the forest, grower, besides taking the sapling up with least injury, is the proper protection of its root fibers against drying out.

The water, with the minerals in solution, is taken up by the roots when the soil is warm enough, but to enable the roots to act they must be closely packed with the soil. It is conveyed mostly through the outer, which are the younger, layers of the wood of root, trunk, and branches to the leaves. Here, as we have seen, under the influence of light and heat it is in large part transpired and in part combined with the carbon into organic compounds, sugar, etc., which serve as food materials. These travel from the leaf into the branchlet, and down through the outer layers of the trunk to the very tips of the root, forming new wood all the way, new buds, which lengthen into shoots, leaves, and flowers, and also new rootlets. To live and grow, therefore, the roots need the food elaborated in the leaves, just as the leaves need the water sent up from the roots.

Hence the interdependence of root system and crown, which must be kept in proportion when transplanting. At least, the root system must be sufficient to supply the needs of the crown.

"SAP UP AND SAP DOWN."