17. This was discovered here in the following manner: Purposing to analyse the electrified bottle, in order to find wherein its strength lay, we placed it on glass, and drew out the cork and wire which for that purpose had been loosely put in. Then taking the bottle in one hand, and bringing a finger of the other near its mouth, a strong spark came from the water, and the shock was as violent as if the wire had remained in it, which shewed that the force did not lie in the wire. Then to find if it resided in the water, being crowded into and condensed in it, as confined by the glass, which had been our former opinion, we electrified the bottle again, and placing it on glass, drew out the wire and cork as before; then taking up the bottle, we decanted all its water into an empty bottle, which likewise stood on glass; and taking up that other bottle, we expected, if the force resided in the water, to find a shock from it; but there was none. We judged then that it must either be lost in decanting, or remain in the first bottle. The latter we found to be true; for that bottle on trial gave the shock, though filled up as it stood with fresh unelectrified water from a tea-pot.—To find, then, whether glass had this property merely as glass, or whether the form contributed any thing to it; we took a pane of sash-glass, and laying it on the hand, placed a plate of lead on its upper surface; then electrified that plate, and bringing a finger to it, there was a spark and shock. We then took two plates of lead of equal dimensions, but less than the glass by two inches every way, and electrified the glass between them, by electrifying the uppermost lead; then separated the glass from the lead, in doing which, what little fire might be in the lead was taken out, and the glass being touched in the electrified parts with a finger, afforded only very small pricking sparks, but a great number of them might be taken from different places. Then dextrously placing it again between the leaden plates, and compleating a circle between the two surfaces, a violent shock ensued.—Which demonstrated the power to reside in glass as glass, and that the non-electrics in contact served only, like the armature of a loadstone, to unite the force of the several parts, and bring them at once to any point desired: it being the property of a non-electric, that the whole body instantly receives or gives what electrical fire is given to or taken from any one of its parts.

18. Upon this we made what we called an electrical-battery, consisting of eleven panes of large sash-glass, armed with thin leaden plates, pasted on each side, placed vertically, and supported at two inches distance on silk cords, with thick hooks of leaden wire, one from each side, standing upright, distant from each other, and convenient communications of wire and chain, from the giving side of one pane, to the receiving side of the other; that so the whole might be charged together, and with the same labour as one single pane; and another contrivance to bring the giving sides, after charging, in contact with one long wire, and the receivers with another, which two long wires would give the force of all the plates of glass at once through the body of any animal forming the circle with them. The plates may also be discharged separately, or any number together that is required. But this machine is not much used, as not perfectly answering our intention with regard to the ease of charging, for the reason given, Sec. 10. We made also of large glass panes, magical pictures, and self-moving animated wheels, presently to be described.

19. I perceive by the ingenious Mr. Watson's last book, lately received, that Dr. Bevis had used, before we had, panes of glass to give a shock[35]; though, till that book came to hand, I thought to have communicated it to you as a novelty. The excuse for mentioning it here is, that we tried the experiment differently, drew different consequences from it (for Mr. Watson still seems to think the fire accumulated on the non-electric that is in contact with the glass, p. 72) and, as far as we hitherto know, have carried it farther.

20. The magical picture[36] is made thus. Having a large metzotinto with a frame and glass, suppose of the KING (God preserve him) take out the print, and cut a pannel out of it near two inches distant from the frame all round. If the cut is through the picture it is not the worse. With thin paste, or gum-water, fix the border that is cut off on the inside the glass, pressing it smooth and close; then fill up the vacancy by gilding the glass well with leaf-gold, or brass. Gild likewise the inner edge of the back of the frame all round, except the top part, and form a communication between that gilding and the gilding behind the glass: then put in the board, and that side is finished. Turn up the glass, and gild the fore side exactly over the back gilding, and when it is dry, cover it, by pasting on the pannel of the picture that hath been cut out, observing to bring the correspondent parts of the border and picture together, by which the picture will appear of a piece, as at first, only part is behind the glass, and part before. Hold the picture horizontally by the top, and place a little moveable gilt crown on the king's head. If now the picture be moderately electrified, and another person take hold of the frame with one hand, so that his fingers touch its inside gilding, and with the other hand endeavour to take off the crown, he will receive a terrible blow, and fail in the attempt. If the picture were highly charged, the consequence might perhaps be as fatal[37] as that of high treason, for when the spark is taken through a quire of paper laid on the picture by means of a wire communication, it makes a fair hole through every sheet, that is, through forty-eight leaves, though a quire of paper is thought good armour against the push of a sword, or even against a pistol bullet, and the crack is exceeding loud. The operator, who holds the picture by the upper end, where the inside of the frame is not gilt, to prevent its falling, feels nothing of the shock, and may touch the face of the picture without danger, which he pretends is a test of his loyalty.—If a ring of persons take the shock among them, the experiment is called, The Conspirators.

21. On the principle, in Sec. 7, that hooks of bottles, differently charged, will attract and repel differently, is made an electrical wheel, that turns with considerable strength. A small upright shaft of wood passes at right angles through a thin round board, of about twelve inches diameter, and turns on a sharp point of iron, fixed in the lower end, while a strong wire in the upper end, passing through a small hole in a thin brass plate, keeps the shaft truly vertical. About thirty radii of equal length, made of sash-glass, cut in narrow strips, issue horizontally from the circumference of the board, the ends most distant from the centre, being about four inches apart. On the end of every one, a brass thimble is fixed. If now the wire of a bottle electrified in the common way, be brought near the circumference of this wheel, it will attract the nearest thimble, and so put the wheel in motion; that thimble, in passing by, receives a spark and thereby being electrified is repelled, and so driven forwards; while a second being attracted, approaches the wire, receives a spark, and is driven after the first, and so on till the wheel has gone once round, when the thimbles before electrified approaching the wire, instead of being attracted as they were at first, are repelled, and the motion presently ceases.—But if another bottle, which had been charged through the coating, be placed near the same wheel, its wire will attract the thimble repelled by the first, and thereby double the force that carries the wheel round; and not only taking out the fire that had been communicated to the thimbles by the first bottle, but even robbing them of their natural quantity, instead of being repelled when they come again towards the first bottle, they are more strongly attracted, so that the wheel mends its pace, till it goes with great rapidity twelve or fifteen rounds in a minute, and with such strength, as that the weight of one hundred Spanish dollars with which we once loaded it, did not seem in the least to retard its motion.—This is called an electrical jack; and if a large fowl were spitted on the upright shaft, it would be carried round before a fire with a motion fit for roasting.

22. But this wheel, like those driven by wind, water, or weights, moves by a foreign force, to wit, that of the bottles. The self-moving wheel, though constructed on the same principles, appears more surprising. It is made of a thin round plate of window-glass, seventeen inches diameter, well gilt on both sides, all but two inches next the edge. Two small hemispheres of wood are then fixed with cement to the middle of the upper and under sides, centrally opposite, and in each of them a thick strong wire eight or ten inches long, which together make the axis of the wheel. It turns horizontally on a point at the lower end of its axis, which rests on a bit of brass cemented within a glass salt-cellar. The upper end of its axis passes through a hole in a thin brass plate cemented to a long strong piece of glass, which keeps it six or eight inches distant from any non-electric, and has a small ball of wax or metal on its top, to keep in the fire. In a circle on the table which supports the wheel, are fixed twelve small pillars of glass, at about four inches distance, with a thimble on the top of each. On the edge of the wheel is a small leaden bullet, communicating by a wire with the gilding of the upper surface of the wheel; and about six inches from it is another bullet, communicating in like manner with the under surface. When the wheel is to be charged by the upper surface, a communication must be made from the under surface to the table. When it is well charged it begins to move; the bullet nearest to a pillar moves towards the thimble on that pillar, and passing by electrifies it, and then pushes itself from it; the succeeding bullet, which communicates with the other surface of the glass, more strongly attracts that thimble, on account of its being before electrified by the other bullet; and thus the wheel encreases its motion till it comes to such a height as that the resistance of the air regulates it. It will go half an hour, and make one minute with another twenty turns in a minute, which is six hundred turns in the whole; the bullet of the upper surface giving in each turn twelve sparks to the thimbles, which makes seven thousand two hundred sparks: and the bullet of the under surface receiving as many from the thimbles; those bullets moving in the time near two thousand five hundred feet.—The thimbles are well fixed, and in so exact a circle, that the bullets may pass within a very small distance of each of them.—If instead of two bullets you put eight, four communicating with the upper surface, and four with the under surface, placed alternately, which eight, at about six inches distance, completes the circumference, the force and swiftness will be greatly increased, the wheel making fifty turns in a minute; but then it will not continue moving so long.—These wheels may be applied, perhaps, to the ringing of chimes,[38] and moving of light-made orreries.

23. A small wire bent circularly, with a loop at each end; let one end rest against the under surface of the wheel, and bring the other end near the upper surface, it will give a terrible crack, and the force will be discharged.

24. Every spark in that manner drawn from the surface of the wheel, makes a round hole in the gilding, tearing off a part of it in coming out; which shews that the fire is not accumulated on the gilding, but is in the glass itself.

25. The gilding being varnished over with turpentine varnish, the varnish, though dry and hard, is burnt by the spark drawn through it, and gives a strong smell and visible smoke. And when the spark is drawn thro' paper, all round the hole made by it, the paper will be blacked by the smoke, which sometimes penetrates several of the leaves. Part of the gilding torn off is also found forcibly driven into the hole made in the paper by the stroke.

26. It is amazing to observe in how small a portion of glass a great electrical force may lie. A thin glass bubble, about an inch diameter, weighing only six grains, being half filled with water, partly gilt on the outside, and furnished with a wire hook, gives, when electrified, as great a shock as a man can well bear. As the glass is thickest near the orifice, I suppose the lower half, which being gilt was electrified and gave the shock, did not exceed two grains; for it appeared, when broken, much thinner than the upper half.—If one of these thin bottles be electrified by the coating, and the spark taken out through the gilding, it will break the glass inwards, at the same time that it breaks the gilding outwards.