27. And allowing (for the reasons before given, § 8, 9, 10,) that there is no more electrical fire in a bottle after charging, than before, how great must be the quantity in this small portion of glass! It seems as if it were of its very substance and essence. Perhaps if that due quantity of electrical fire so obstinately retained by glass, could be separated from it, it would no longer be glass; it might lose its transparency, or its brittleness, or its elasticity.—Experiments may possibly be invented hereafter, to discover this.

27. We were surprised at the account given in Mr. Watson's book, of a shock communicated through a great space of dry ground, and suspect there must be some metalline quality in the gravel of that ground; having found that simple dry earth, rammed in a glass tube, open at both ends, and a wire hook inserted in the earth at each end, the earth and wires making part of a circuit, would not conduct the least perceptible shock, and indeed when one wire was electrified the other hardly shewed any signs of its being in connection with it[39]. Even a thoroughly wet packthread sometimes fails of conducting a shock, though it otherwise conducts electricity very well. A dry cake of ice, or an icicle held between two in a circle, likewise prevents the shock, which one would not expect, as water conducts it so perfectly well.—Gilding on a new book, though at first it conducts the shock extremely well, yet fails after ten or a dozen experiments, though it appears otherwise in all respects the same, which we cannot account for[40].

28. There is one experiment more which surprises us, and is not hitherto satisfactorily accounted for; it is this: Place an iron shot on a glass stand, and let a ball of damp cork, suspended by a silk thread, hang in contact with the shot. Take a bottle in each hand, one that is electrified through the hook, the other through the coating: Apply the giving wire to the shot, which will electrify it positively, and the cork shall be repelled: then apply the requiring wire, which will take out the spark given by the other; when the cork will return to the shot: Apply the same again, and take out another spark, so will the shot be electrified negatively, and the cork in that case shall be repelled equally as before. Then apply the giving wire to the shot, and give the spark it wanted, so will the cork return: Give it another, which will be an addition to its natural quantity, so will the cork be repelled again: And so may the experiment be repeated as long as there is any charge in the bottles. Which shews that bodies, having less than the common quantity of electricity, repel each other, as well as those that have more.

Chagrined a little that we have been hitherto able to produce nothing in this way of use to mankind; and the hot weather coming on, when electrical experiments are not so agreeable, it is proposed to put an end to them for this season, somewhat humorously, in a party of pleasure, on the banks of Skuylkil[41]. Spirits, at the same time, are to be fired by a spark sent from side to side through the river, without any other conductor than the water; an experiment which we some time since performed, to the amazement of many[42]. A turkey is to be killed for our dinner by the electrical shock, and roasted by the electrical jack, before a fire kindled by the electrified bottle: when the healths of all the famous electricians in England, Holland, France, and Germany are to be drank in electrified bumpers[43], under the discharge of guns from the electrical battery.

FOOTNOTES:

[33] This was a discovery of the very ingenious Mr. Kinnersley, and by him communicated to me.

[34] To charge a bottle commodiously through the coating, place it on a glass stand; form a communication from the prime conductor to the coating, and another from the hook to the wall or floor. When it is charged, remove the latter communication before you take hold of the bottle, otherwise great part of the fire will escape by it.

[35] I have since heard that Mr. Smeaton was the first who made use of panes of glass for that purpose.

[36] Contrived by Mr. Kinnersley.

[37] We have since found it fatal to small animals, though not to large ones. The biggest we have yet killed is a hen. 1750.