Three Possibilities Anticipated. According to Newton’s assumption, light consists of corpuscles, or minute particles, emitted from the source of light. If this be true these particles, having mass, should be affected by the gravitational pull of the sun. If we apply Newton’s theory of gravitation and make use of his formula, it can be shown that such a gravitational pull would displace the ray of light by an average amount equal to 0.75 (seconds of angular distance.)[1] On the other hand, where light is regarded as waves set in motion in the “ether” of space (the wave theory of light), and where weight is denied light altogether, no deviation need be expected. Finally there is a third alternative: Einstein’s. Light, says Einstein, has mass, and therefore probably weight. Mass is the matter light contains; weight represents pull by gravity. Light rays will be attracted by the sun, but according to Einstein’s theory of gravitation the sun’s gravitational pull will displace the rays by an average amount equal to 1.75 (seconds of angular distance).

The Expeditions. That science is highly international, despite many recent examples to the contrary, is evidenced by this British Eclipse Expedition. Here was a theory propounded by one who had accepted a chair of physics in the university of Berlin, and across the English Channel were Germany’s mortal enemies making elaborate preparations to test the validity of the Berlin professor’s theory.

The British Astronomical Society began to plan the eclipse expedition even before the outbreak of the Great War. During the years that followed, despite the destinies of nations which hung on threads from day to day, despite the darkest hours in the history of the British people, our English astronomers continued to give attention to the details of the proposed expedition. When the day of the eclipse came all was in readiness.

One expedition under Dr. Crommelin was sent to Sobral, Brazil; another, under Prof. Eddington, to Principe, an island off the west coast of Africa. In both these places a total eclipse was anticipated.

The eclipse occurred on May 29, 1919. It lasted for six to eight minutes. Some 15 photographs, with an average exposure of five to six seconds, were taken. Two months later another series of photographs of the same region were taken, but this time the sun was no longer in the midst of these stars.

The photographs were brought to the famous Greenwich Observatory, near London, and the astronomers and mathematicians began their laborious measurements and calculations.

On November 6, at the meeting of the Royal Society, the result was announced. The Sobral expedition reported 1.98; the Principe expedition 1.62. The average was 1.8. Einstein had predicted 1.75, Newton might have predicted 0.75, and the orthodox scientists would have predicted 0. There could now no longer be any question as to which of the three theories rested on a sure foundation. To quote Sir Frank Dyson, the Astronomer Royal: “After a careful study of the plates I am prepared to say that there can be no doubt that they confirm Einstein’s prediction. A very definite result has been obtained that light is deflected in accordance with Einstein’s law of gravitation.”[2]

Where Did Einstein Get His Idea of Gravitation? In 1905 Einstein published the first of a series of papers supporting and extending a theory of time and space to which the name “the theory of relativity” had been given. These views as expounded by Einstein came into direct conflict with Newton’s ideas of time and space, and also with Newton’s law of gravitation. Since Einstein had more faith in his theory of relativity than in Newton’s theory of gravitation, Einstein so changed the latter as to make it harmonize with the former. More will be said on this subject.

Let not the reader misunderstand. Newton was not wholly in the wrong; he was only approximately right. With the knowledge existing in Newton’s day Newton could have done no more than he did; no mortal could have done more. But since Newton’s day physics—and science in general—has advanced in great strides, and Einstein can interpret present-day knowledge in the same masterful fashion that Newton could in his day. With more facts to build upon, Einstein’s law of gravitation is more universal than Newton’s; it really includes Newton’s.

But now we must turn our attention very briefly to the theory of relativity—the theory that led up to Einstein’s law of gravitation.