The Theory of Relativity. The story goes that Einstein was led to his ideas by watching a man fall from a roof. This story bears a striking similarity to Newton and the apple. Perhaps one is as true as the other.[3]

However that may be, the principle of relativity is as old as philosophical thought, for it denies the possibility of measuring absolute time, or absolute space. All things are relative. We say that it takes a “long time” to get from New York to Albany; long as compared to what? long, perhaps, as compared to the time it takes to go from New York City to Brooklyn. We say the White House is “large”; large when compared to a room in an apartment. But we can just as well reverse our ideas of time and distance. The time it takes to go from New York to Albany is “short” when compared to the time it takes to go from New York to San Francisco. The size of the White House is “small” when compared to the size of the city of Washington.

Let us take another illustration. Every time the earth turns on its axis we mark down as a day. With this as a basis, we say that it takes a little over 365 days for the earth to complete its revolution around the sun, and our 365 days we call a year. But now consider some of our other planets. With our time as a basis, it takes Jupiter or Saturn 10 hours to turn on its axis, as compared to the 24 hours it takes the earth to turn. Saturn’s day is less than one-half our day, and our day is more than twice Saturn’s—that is, according to the calculations of the inhabitants of the earth. Mercury completes her circuit around the sun in 88 days; Neptune, in 164 years. Mercury’s year is but one-fourth ours, Neptune’s, 164 times ours. And observers at Mercury and Neptune would regard us from their standard of time, which differs from our standard.

You may say, why not take our standard of time as the standard, and measure everything by it? But why should you? Such a selection would be quite arbitrary. It would not be based on anything absolute, but would merely depend on our velocity around the sun.

These ideas are old enough in metaphysics. Einstein’s improvement of them consists not merely in speculating about them, but in giving them mathematical form.

The Origin of the Theory of Relativity. A train moves with reference to the earth. The earth moves with reference to the sun. We say the sun is stationary and the earth moves around the sun. But how do we know that the sun itself does not move with reference to some other body? How do we know that our planetary system, and the stars, and the cosmos as a whole is not in motion?

There is no way of answering such a question unless we could get a point of reference which is fixed—fixed absolutely in space.

We have already alluded to our view of the nature of light, known as the wave theory of light. This theory postulates the existence of an all-pervading “ether” in space. Light sets up wave disturbances in this ether, and is thus propagated. If the ocean were the ether, the waves of the ocean would compare with the waves set up by the ether.

But what is this ether? It cannot be seen. It defies weight. It permeates all space. It permeates all matter. So say the exponents of this ether. To the layman this sounds very much like another name for the Deity. To Sir Oliver Lodge it represents the spirits of the departed.

To us, of importance is the conception that this ether is absolutely stationary. Such a conception is logical if the various developments in optics and electricity are considered. But if absolutely stationary, then the ether is the long-sought-for point of reference, the guide to determine the motion of all bodies in the universe.