The only reason, then, why the moon does not fall to the earth is on account of its motion. Were it to stop moving even for the fraction of a second it would come straight down to us, and probably few would live to tell the tale.
Newton reasoned that what keeps the moon revolving around the earth is the gravitational pull of the latter. The next important step was to discover the law regulating this motion. Here Kepler’s observations of the movements of the planets around the sun was of inestimable value; for from these Newton deduced the hypothesis that attraction varies inversely as the square of the distance. Making use of this hypothesis, Newton calculated what the attractive power possessed by the earth must be in order that the moon may continue in its path. He next compared this force with the force exerted by the earth in pulling the apple to the ground, and found the forces to be identical! “I compared,” he writes, “the force necessary to keep the moon in her orb with the force of gravity at the surface of the earth, and found them answer pretty nearly.” One and the same force pulls the moon and pulls the apple—the force of gravity. Further, the hypothesis that the force of gravity varies inversely as the square of the distance had now received experimental confirmation.
The next step was perfectly clear. If the moon’s motion is controlled by the earth’s gravitational pull, why is it not possible that the earth’s motion, in turn, is controlled by the sun’s gravitational pull? that, in fact, not only the earth’s motion, but the motion of all the planets is regulated by the same means?
Here again Kepler’s pioneer work was a foundation comparable to reinforced concrete. Kepler, as we have seen, had shown that the earth revolves around the sun in the form of an ellipse, one of the foci of this ellipse being occupied by the sun. Newton now proved that such an elliptic path was possible only if the intensity of the attractive force between sun and planet varied inversely as the square of the distance—the very same relationship that had been applied with such success in explaining the motion of the moon around the earth!
Newton showed that the moon, the sun, the planets—every body in space conformed to this law. The earth attracts the moon; but so does the moon the earth. If the moon revolves around the earth rather than the earth around the moon, it is because the earth is a much larger body, and hence its gravitational pull is stronger. The same is true of the relationship existing between the earth and the sun.
Further Developments of Newton’s Law of Gravitation. When we speak of the earth attracting the moon, and the moon the earth, what we really mean is that every one of the myriad particles composing the earth attracts every one of the myriad particles composing the moon, and vice versa. If in dealing with the attractive forces existing between a planet and its satellite, or a planet and the sun, the power exerted by every one of these myriad particles would have to be considered separately, then the mathematical task of computing such forces might well appear hopeless. Newton was able to present the problem in a very simple form by pointing out that in a sphere such as the earth or the moon, the entire mass might be considered as residing in the center of the sphere. For purposes of computation, the earth can be considered a particle, with its entire mass concentrated at the center of the particle. This viewpoint enabled Newton to extend his law of inverse squares to the remotest bodies in the universe.
If this great law of Newton’s found such general application beyond our planet, it served an equally useful purpose in explaining a number of puzzling features on this planet. The ebb and flow of the tides was one of these puzzles. Even in ancient times it had been noticed that a full moon and a high tide went hand in hand, and various mysterious powers, were attributed to the satellite and the ocean. Newton pointed out that the height of the water was a direct consequence of the attractive power of the moon, and, to a lesser extent, because further away, of the sun.
One of his first explanations, however, dealt with certain irregularities in the moon’s motion around the earth. If the solar system would consist of the earth and moon alone, then the path of the moon would be that of an ellipse, with one of the foci of this ellipse occupied by the earth. Unfortunately for the simplicity of the problem, there are other bodies relatively near in space, particularly that huge body, the sun. The sun not only exerts its pull on the earth but also on the moon. However, as the sun is much further away from the moon than is the earth, the earth’s attraction for its satellite is much greater, despite the fact that the sun is much huger and weighs far more than the earth. The greater pull of the earth in one direction, and a lesser pull of the sun in another, places the poor moon between the devil and the deep sea. The situation gives rise to a complexity of forces, the net result of which is that the moon’s orbit is not quite that of an ellipse. Newton was able to account for all the forces that come into play, and he proved that the actual path of the moon was a direct consequence of the law of inverse squares in actual operation.
The “Principia.” The law of gravitation, embodying also laws of motion, which we shall discuss presently, was first published in Newton’s immortal “Principia” (1686). A selection from the preface will disclose the contents of the book, and, incidentally, the style of the author: “… We offer this work as mathematical principles of philosophy; for all the difficulty in philosophy seems to consist in this—from the phenomena of motions to investigate the forces of nature, and then from these forces to demonstrate the other phenomena; and to this end the general propositions in the first and second book are directed. In the third book we give an example of this in the explication of the system of the world; for by the propositions mathematically demonstrated in the first book, we there derive from the celestial phenomena the forces of gravity with which bodies tend to the sun and the several planets. Then, from these forces, by other propositions which are also mathematical, we deduce the motions of the planets, the comets, the moon and the sea. I wish we could derive the rest of the phenomena of nature by the same kind of reasoning from mechanical principles; for I am induced by many reasons to suspect that they may all depend upon certain forces by which the particles of bodies, by some causes hitherto unknown, are either mutually impelled towards each other, and cohere in regular figures, or are repelled and recede from each other.…”
At this point we may state that neither Newton, nor any of Newton’s successors including Einstein, have been able to advance even a plausible theory as to the nature of this gravitational force. We know that this force pulls a stone to the ground; we know, thanks to Newton, the laws regulating the motions due to gravity; but what this force we call gravity really is we do not know. The mystery is as deep as the mystery of the origin of life.