“Prof. Einstein,” writes Prof. Eddington, “has sought, and has not reached, any ultimate explanation of its [that is, gravitation] cause. A certain connection between the gravitational field and the measurement of space has been postulated, but this throws light rather on the nature of our measurements than on gravitation itself. The relativity theory is indifferent to hypotheses as to the nature of gravitation, just as it is indifferent to hypotheses as to the nature of light.”

Newton’s Laws of Motion. In his Principia Newton begins with a series of simple definitions dealing with matter and force, and these are followed by his three famous laws of motion. The nature and amount of the effort required to start a body moving, and the conditions required to keep a body in motion, are included in these laws. The Fundamentals, mass, time and space, are exhibited in their various relationships. Of importance to us particularly is that in these laws, time and space are considered as definite entities, and as two distinct and widely separated manifestations. We shall see that in Einstein’s hands a very close relationship between these two is brought about.

Both Newton and Einstein were led to their theory of gravitation by profound studies of the mathematics of motion, but as Newton’s conception of motion differed from Einstein’s, and as, moreover, important discoveries into the nature of matter and the relationship of motion to matter were made subsequent to Newton’s time, we need not wonder that the two theories show divergence; that, as we shall see, Newton’s is probably but an approximation of the truth. If we confine our attention to our own solar system, the deviation from Newton’s law is, as a rule, so small as to be negligible.

Newton’s laws of motion are really axioms, like the axioms of Euclid: they do not admit of direct proof; but there is this difference, that the axioms of Euclid seem more obviously true. For example, when Euclid informs us that “things which are equal to the same thing are equal to one another,” we have no hesitation in accepting this statement, for it seems so self-evident. When, however, we are told by Newton that “the alteration of motion is ever proportional to the motive force impressed,” we are at first somewhat bewildered with the phraseology, and then, even when that has been mastered, the readiness with which we respond will probably depend upon the amount of scientific training we have received.

“Every body continues in its state of rest or of uniform motion in a straight line, unless it is compelled to change that state by forces impressed thereon.” So runs Newton’s first law of motion. A body does not move unless something causes it to move; to make the body move you must overcome the inertia of the body. On the other hand, if a body is moving, it tends to continue moving, as witness our forward movement when the train is brought to a standstill. It may be asked, why does not a bullet continue moving indefinitely once it has left the barrel of the gun? Because of the resistance of the air which it has to overcome; and the path of the bullet is not straight because gravity acts on it and tends to pull it downwards.

We have no definite means of proving that a body once set in motion would continue moving, for an indefinite time, and along a straight line. What Newton meant was that a body would continue moving provided no external force acted on it; but in actual practise such a condition is unknown.

Newton’s first law defines force as that action necessary to change a state of rest or of uniform motion, and tells us that force alone changes the motion of a body. His second law deals with the relation of the force applied and the resulting change of motion of the body; that is, it shows us how force may be measured. “The alteration of motion is ever proportional to the motive force impressed, and is made in the direction of the right line in which that force is impressed.”

Newton’s third law runs—“To every action there is always opposed an equal reaction.” The very fact that you have to use force means that you have to overcome something of an opposite nature. The forward pull of a horse towing a boat equals the backward pull of the tow-rope connecting boat and horse. “Many people,” says Prof. Watson, “find a difficulty in accepting this statement … since they think that if the force exerted by the horse on the rope were not a little greater than the backward force exerted by the rope on the horse, the boat would not progress. In this case we must, however, remember that, as far as their relative positions are concerned, the horse and the boat are at rest, and form a single body, and the action and reaction between them, due to the tension on the rope, must be equal and opposite, for otherwise there would be relative motion, one with respect to the other.”

It may well be asked, what bearing have these laws of Newton on the question of time and space? Simply this, that to measure force the factors necessary are the masses of the bodies concerned, the time involved and the space covered; and Newton’s equations for measuring forces assume time and space to be quite independent of one another. As we shall see, this is in striking contrast to Einstein’s view.

Newton’s Researches on Light. In 1665, when but 23 years old, Newton invented the binomial theorem and the infinitesimal calculus, two phases of pure mathematics which have been the cause of many a sleepless night to college freshmen. Had Newton done nothing else his fame would have been secure. But we have already glanced at his law of inverse squares and the law of gravitation. We now have to turn to some of Newton’s contributions to optics, because here more than elsewhere we shall find the starting point to a series of researches which have culminated so brilliantly in the work of Einstein.