Newton turned his attention to optics in 1666 when he proved that the light from the sun, which appears white to us, is in reality a mixture of all the colors of the rainbow. This he showed by placing a prism between the ray of light and a screen. A spectrum showing all the colors from red to violet appeared on the screen.

Another notable achievement of his was the design of a telescope which brought objects to a sharp focus and prevented the blurring effects which had occasioned so much annoyance to Newton and his predecessors in all their astronomical observations.

These and other discoveries of very great interest were brought together in a volume on optics which Newton published in 1704. Our particular concern here is to examine the views advanced by him as to the nature of light.

That the nature of light should have been a subject for speculation even to the ancients need not surprise us. If other senses, as touch, for example, convey impressions of objects, it is true to say that the sense of sight conveys the most complete impression. Our conception of the external world is largely based upon the sense of sight; particularly so when we deal with objects beyond our reach. In astronomy, therefore, a study of the properties of light is indispensable.[1]

But what is this light? We open our eyes and we see; we close our eyes and we fail to see. At night in a dark room we may have our eyes open and yet we do not see; light, then, must be absent. Evidently, light does not wholly depend upon whether our eyes are open or closed. This much is certain: the eye functions and something else functions. What is this “something else”?

Strangely enough, Plato and Aristotle regarded light as a property of the eye and the eye alone. Out of the eye tentacles were shot which intercepted the object and so illuminated it. From what has already been said, such a view seems highly unlikely. Far more consistent with their philosophy in other directions would have been the theory that light has its source in the object and not in the eye, and travels from object to eye rather than the reverse. How little substance the Aristotelian contribution possesses is immediately seen when we refer to the art of photography. Here light rays produce effects which are independent of any property of the eye. The blind man may click the camera and produce the impression on the plate.

Newton, of course, could have fallen into no such error as did Plato and Aristotle. The source of light to him was the luminous body. Such a body had the power of emitting minute particles at great speed, and these when coming in contact with the retina produce the sensation of sight.

This emission or corpuscular theory of Newton’s was combated very strongly by his illustrious Dutch contemporary, Huyghens, who maintained that light was a wave phenomenon, the disturbance starting at the luminous body and spreading out in all directions. The wave motions of the sea offer a certain analogy.

Newton’s strongest objection to Huyghens’ wave theory was that it seemed to offer no satisfactory explanation as to why light travelled in straight lines. He says: “To me the fundamental supposition itself seems impossible, namely that the waves or vibrations of any fluid can, like the rays of light, be propagated in straight lines, without a continual and very extravagant bending and spreading every way into the quiescent medium, where they are terminated by it. I mistake if there be not both experiment and demonstration to the contrary.”

In the corpuscular theory the particles emitted by the luminous body were supposed to travel in straight lines. In empty space the particles travelled in straight lines and spread in all directions. To explain how light could traverse some types of matter—liquids, for example—Newton supposed that these light particles travelled in the spaces between the molecules of the liquid.