The maxim in question is, that if one collection is part of another, the one which is a part has fewer terms than the one of which it is a part. This maxim is true of finite numbers. For example, Englishmen are only some among Europeans, and there are fewer Englishmen than Europeans. But when we come to infinite numbers, this is no longer true. This breakdown of the maxim gives us the precise definition of infinity. A collection of terms is infinite when it contains as parts other collections which have just as many terms as it has. If you can take away some of the terms of a collection, without diminishing the number of terms, then there are an infinite number of terms in the collection. For example, there are just as many even numbers as there are numbers altogether, since every number can be doubled. This may be seen by putting odd and even numbers together in one row, and even numbers alone in a row below:—
1, 2, 3, 4, 5, ad infinitum.
2, 4, 6, 8, 10, ad infinitum.
There are obviously just as many numbers in the row below as in the row above, because there is one below for each one above. This property, which was formerly thought to be a contradiction, is now transformed into a harmless definition of infinity, and shows, in the above case, that the number of finite numbers is infinite.
But the uninitiated may wonder how it is possible to deal with a number which cannot be counted. It is impossible to count up all the numbers, one by one, because, however many we may count, there are always more to follow. The fact is that counting is a very vulgar and elementary way of finding out how many terms there are in a collection. And in any case, counting gives us what mathematicians call the ordinal number of our terms; that is to say, it arranges our terms in an order or series, and its result tells us what type of series results from this arrangement. In other words, it is impossible to count things without counting some first and others afterwards, so that counting always has to do with order. Now when there are only a finite number of terms, we can count them in any order we like; but when there are an infinite number, what corresponds to counting will give us quite different results according to the way in which we carry out the operation. Thus the ordinal number, which results from what, in a general sense may be called counting, depends not only upon how many terms we have, but also (where the number of terms is infinite) upon the way in which the terms are arranged.
The fundamental infinite numbers are not ordinal, but are what is called cardinal. They are not obtained by putting our terms in order and counting them, but by a different method, which tells us, to begin with, whether two collections have the same number of terms, or, if not, which is the greater.[14] It does not tell us, in the way in which counting does, what number of terms a collection has; but if we define a number as the number of terms in such and such a collection, then this method enables us to discover whether some other collection that may be mentioned has more or fewer terms. An illustration will show how this is done. If there existed some country in which, for one reason or another, it was impossible to take a census, but in which it was known that every man had a wife and every woman a husband, then (provided polygamy was not a national institution) we should know, without counting, that there were exactly as many men as there were women in that country, neither more nor less. This method can be applied generally. If there is some relation which, like marriage, connects the things in one collection each with one of the things in another collection, and vice versa, then the two collections have the same number of terms. This was the way in which we found that there are as many even numbers as there are numbers. Every number can be doubled, and every even number can be halved, and each process gives just one number corresponding to the one that is doubled or halved. And in this way we can find any number of collections each of which has just as many terms as there are finite numbers. If every term of a collection can be hooked on to a number, and all the finite numbers are used once, and only once, in the process, then our collection must have just as many terms as there are finite numbers. This is the general method by which the numbers of infinite collections are defined.
But it must not be supposed that all infinite numbers are equal. On the contrary, there are infinitely more infinite numbers than finite ones. There are more ways of arranging the finite numbers in different types of series than there are finite numbers. There are probably more points in space and more moments in time than there are finite numbers. There are exactly as many fractions as whole numbers, although there are an infinite number of fractions between any two whole numbers. But there are more irrational numbers than there are whole numbers or fractions. There are probably exactly as many points in space as there are irrational numbers, and exactly as many points on a line a millionth of an inch long as in the whole of infinite space. There is a greatest of all infinite numbers, which is the number of things altogether, of every sort and kind. It is obvious that there cannot be a greater number than this, because, if everything has been taken, there is nothing left to add. Cantor has a proof that there is no greatest number, and if this proof were valid, the contradictions of infinity would reappear in a sublimated form. But in this one point, the master has been guilty of a very subtle fallacy, which I hope to explain in some future work.[15]
We can now understand why Zeno believed that Achilles cannot overtake the tortoise and why as a matter of fact he can overtake it. We shall see that all the people who disagreed with Zeno had no right to do so, because they all accepted premises from which his conclusion followed. The argument is this: Let Achilles and the tortoise start along a road at the same time, the tortoise (as is only fair) being allowed a handicap. Let Achilles go twice as fast as the tortoise, or ten times or a hundred times as fast. Then he will never reach the tortoise. For at every moment the tortoise is somewhere and Achilles is somewhere; and neither is ever twice in the same place while the race is going on. Thus the tortoise goes to just as many places as Achilles does, because each is in one place at one moment, and in another at any other moment. But if Achilles were to catch up with the tortoise, the places where the tortoise would have been would be only part of the places where Achilles would have been. Here, we must suppose, Zeno appealed to the maxim that the whole has more terms than the part.[16] Thus if Achilles were to overtake the tortoise, he would have been in more places than the tortoise; but we saw that he must, in any period, be in exactly as many places as the tortoise. Hence we infer that he can never catch the tortoise. This argument is strictly correct, if we allow the axiom that the whole has more terms than the part. As the conclusion is absurd, the axiom must be rejected, and then all goes well. But there is no good word to be said for the philosophers of the past two thousand years and more, who have all allowed the axiom and denied the conclusion.
The retention of this axiom leads to absolute contradictions, while its rejection leads only to oddities. Some of these oddities, it must be confessed, are very odd. One of them, which I call the paradox of Tristram Shandy, is the converse of the Achilles, and shows that the tortoise, if you give him time, will go just as far as Achilles. Tristram Shandy, as we know, employed two years in chronicling the first two days of his life, and lamented that, at this rate, material would accumulate faster than he could deal with it, so that, as years went by, he would be farther and farther from the end of his history. Now I maintain that, if he had lived for ever, and had not wearied of his task, then, even if his life had continued as event fully as it began, no part of his biography would have remained unwritten. For consider: the hundredth day will be described in the hundredth year, the thousandth in the thousandth year, and so on. Whatever day we may choose as so far on that he cannot hope to reach it, that day will be described in the corresponding year. Thus any day that may be mentioned will be written up sooner or later, and therefore no part of the biography will remain permanently unwritten. This paradoxical but perfectly true proposition depends upon the fact that the number of days in all time is no greater than the number of years.
Thus on the subject of infinity it is impossible to avoid conclusions which at first sight appear paradoxical, and this is the reason why so many philosophers have supposed that there were inherent contradictions in the infinite. But a little practice enables one to grasp the true principles of Cantor's doctrine, and to acquire new and better instincts as to the true and the false. The oddities then become no odder than the people at the antipodes, who used to be thought impossible because they would find it so inconvenient to stand on their heads.
The solution of the problems concerning infinity has enabled Cantor to solve also the problems of continuity. Of this, as of infinity, he has given a perfectly precise definition, and has shown that there are no contradictions in the notion so defined. But this subject is so technical that it is impossible to give any account of it here.