The notion of continuity depends upon that of order, since continuity is merely a particular type of order. Mathematics has, in modern times, brought order into greater and greater prominence. In former days, it was supposed (and philosophers are still apt to suppose) that quantity was the fundamental notion of mathematics. But nowadays, quantity is banished altogether, except from one little corner of Geometry, while order more and more reigns supreme. The investigation of different kinds of series and their relations is now a very large part of mathematics, and it has been found that this investigation can be conducted without any reference to quantity, and, for the most part, without any reference to number. All types of series are capable of formal definition, and their properties can be deduced from the principles of symbolic logic by means of the Algebra of Relatives. The notion of a limit, which is fundamental in the greater part of higher mathematics, used to be defined by means of quantity, as a term to which the terms of some series approximate as nearly as we please. But nowadays the limit is defined quite differently, and the series which it limits may not approximate to it at all. This improvement also is due to Cantor, and it is one which has revolutionised mathematics. Only order is now relevant to limits. Thus, for instance, the smallest of the infinite integers is the limit of the finite integers, though all finite integers are at an infinite distance from it. The study of different types of series is a general subject of which the study of ordinal numbers (mentioned above) is a special and very interesting branch. But the unavoidable technicalities of this subject render it impossible to explain to any but professed mathematicians.
Geometry, like Arithmetic, has been subsumed, in recent times, under the general study of order. It was formerly supposed that Geometry was the study of the nature of the space in which we live, and accordingly it was urged, by those who held that what exists can only be known empirically, that Geometry should really be regarded as belonging to applied mathematics. But it has gradually appeared, by the increase of non-Euclidean systems, that Geometry throws no more light upon the nature of space than Arithmetic throws upon the population of the United States. Geometry is a whole collection of deductive sciences based on a corresponding collection of sets of axioms. One set of axioms is Euclid's; other equally good sets of axioms lead to other results. Whether Euclid's axioms are true, is a question as to which the pure mathematician is indifferent; and, what is more, it is a question which it is theoretically impossible to answer with certainty in the affirmative. It might possibly be shown, by very careful measurements, that Euclid's axioms are false; but no measurements could ever assure us (owing to the errors of observation) that they are exactly true. Thus the geometer leaves to the man of science to decide, as best he may, what axioms are most nearly true in the actual world. The geometer takes any set of axioms that seem interesting, and deduces their consequences. What defines Geometry, in this sense, is that the axioms must give rise to a series of more than one dimension. And it is thus that Geometry becomes a department in the study of order.
In Geometry, as in other parts of mathematics, Peano and his disciples have done work of the very greatest merit as regards principles. Formerly, it was held by philosophers and mathematicians alike that the proofs in Geometry depended on the figure; nowadays, this is known to be false. In the best books there are no figures at all. The reasoning proceeds by the strict rules of formal logic from a set of axioms laid down to begin with. If a figure is used, all sorts of things seem obviously to follow, which no formal reasoning can prove from the explicit axioms, and which, as a matter of fact, are only accepted because they are obvious. By banishing the figure, it becomes possible to discover all the axioms that are needed; and in this way all sorts of possibilities, which would have otherwise remained undetected, are brought to light.
One great advance, from the point of view of correctness, has been made by introducing points as they are required, and not starting, as was formerly done, by assuming the whole of space. This method is due partly to Peano, partly to another Italian named Fano. To those unaccustomed to it, it has an air of somewhat wilful pedantry. In this way, we begin with the following axioms: (1) There is a class of entities called points. (2) There is at least one point. (3) If a be a point, there is at least one other point besides a. Then we bring in the straight line joining two points, and begin again with (4), namely, on the straight line joining a and b, there is at least one other point besides a and b. (5) There is at least one point not on the line ab. And so we go on, till we have the means of obtaining as many points as we require. But the word space, as Peano humorously remarks, is one for which Geometry has no use at all.
The rigid methods employed by modern geometers have deposed Euclid from his pinnacle of correctness. It was thought, until recent times, that, as Sir Henry Savile remarked in 1621, there were only two blemishes in Euclid, the theory of parallels and the theory of proportion. It is now known that these are almost the only points in which Euclid is free from blemish. Countless errors are involved in his first eight propositions. That is to say, not only is it doubtful whether his axioms are true, which is a comparatively trivial matter, but it is certain that his propositions do not follow from the axioms which he enunciates. A vastly greater number of axioms, which Euclid unconsciously employs, are required for the proof of his propositions. Even in the first proposition of all, where he constructs an equilateral triangle on a given base, he uses two circles which are assumed to intersect. But no explicit axiom assures us that they do so, and in some kinds of spaces they do not always intersect. It is quite doubtful whether our space belongs to one of these kinds or not. Thus Euclid fails entirely to prove his point in the very first proposition. As he is certainly not an easy author, and is terribly long-winded, he has no longer any but an historical interest. Under these circumstances, it is nothing less than a scandal that he should still be taught to boys in England.[17] A book should have either intelligibility or correctness; to combine the two is impossible, but to lack both is to be unworthy of such a place as Euclid has occupied in education.
The most remarkable result of modern methods in mathematics is the importance of symbolic logic and of rigid formalism. Mathematicians, under the influence of Weierstrass, have shown in modern times a care for accuracy, and an aversion to slipshod reasoning, such as had not been known among them previously since the time of the Greeks. The great inventions of the seventeenth century—Analytical Geometry and the Infinitesimal Calculus—were so fruitful in new results that mathematicians had neither time nor inclination to examine their foundations. Philosophers, who should have taken up the task, had too little mathematical ability to invent the new branches of mathematics which have now been found necessary for any adequate discussion. Thus mathematicians were only awakened from their "dogmatic slumbers" when Weierstrass and his followers showed that many of their most cherished propositions are in general false. Macaulay, contrasting the certainty of mathematics with the uncertainty of philosophy, asks who ever heard of a reaction against Taylor's theorem? If he had lived now, he himself might have heard of such a reaction, for this is precisely one of the theorems which modern investigations have overthrown. Such rude shocks to mathematical faith have produced that love of formalism which appears, to those who are ignorant of its motive, to be mere outrageous pedantry.
The proof that all pure mathematics, including Geometry, is nothing but formal logic, is a fatal blow to the Kantian philosophy. Kant, rightly perceiving that Euclid's propositions could not be deduced from Euclid's axioms without the help of the figures, invented a theory of knowledge to account for this fact; and it accounted so successfully that, when the fact is shown to be a mere defect in Euclid, and not a result of the nature of geometrical reasoning, Kant's theory also has to be abandoned. The whole doctrine of a priori intuitions, by which Kant explained the possibility of pure mathematics, is wholly inapplicable to mathematics in its present form. The Aristotelian doctrines of the schoolmen come nearer in spirit to the doctrines which modern mathematics inspire; but the schoolmen were hampered by the fact that their formal logic was very defective, and that the philosophical logic based upon the syllogism showed a corresponding narrowness. What is now required is to give the greatest possible development to mathematical logic, to allow to the full the importance of relations, and then to found upon this secure basis a new philosophical logic, which may hope to borrow some of the exactitude and certainty of its mathematical foundation. If this can be successfully accomplished, there is every reason to hope that the near future will be as great an epoch in pure philosophy as the immediate past has been in the principles of mathematics. Great triumphs inspire great hopes; and pure thought may achieve, within our generation, such results as will place our time, in this respect, on a level with the greatest age of Greece.[18]
FOOTNOTES:
[11] This subject is due in the main to Mr. C.S. Peirce.