Wherever possible, logical constructions are to be substituted for inferred entities.
Some examples of the substitution of construction for inference in the realm of mathematical philosophy may serve to elucidate the uses of this maxim. Take first the case of irrationals. In old days, irrationals were inferred as the supposed limits of series of rationals which had no rational limit; but the objection to this procedure was that it left the existence of irrationals merely optative, and for this reason the stricter methods of the present day no longer tolerate such a definition. We now define an irrational number as a certain class of ratios, thus constructing it logically by means of ratios, instead of arriving at it by a doubtful inference from them. Take again the case of cardinal numbers. Two equally numerous collections appear to have something in common: this something is supposed to be their cardinal number. But so long as the cardinal number is inferred from the collections, not constructed in terms of them, its existence must remain in doubt, unless in virtue of a metaphysical postulate ad hoc. By defining the cardinal number of a given collection as the class of all equally numerous collections, we avoid the necessity of this metaphysical postulate, and thereby remove a needless element of doubt from the philosophy of arithmetic. A similar method, as I have shown elsewhere, can be applied to classes themselves, which need not be supposed to have any metaphysical reality, but can be regarded as symbolically constructed fictions.
The method by which the construction proceeds is closely analogous in these and all similar cases. Given a set of propositions nominally dealing with the supposed inferred entities, we observe the properties which are required of the supposed entities in order to make these propositions true. By dint of a little logical ingenuity, we then construct some logical function of less hypothetical entities which has the requisite properties. This constructed function we substitute for the supposed inferred entities, and thereby obtain a new and less doubtful interpretation of the body of propositions in question. This method, so fruitful in the philosophy of mathematics, will be found equally applicable in the philosophy of physics, where, I do not doubt, it would have been applied long ago but for the fact that all who have studied this subject hitherto have been completely ignorant of mathematical logic. I myself cannot claim originality in the application of this method to physics, since I owe the suggestion and the stimulus for its application entirely to my friend and collaborator Dr. Whitehead, who is engaged in applying it to the more mathematical portions of the region intermediate between sense-data and the points, instants and particles of physics.
A complete application of the method which substitutes constructions for inferences would exhibit matter wholly in terms of sense-data, and even, we may add, of the sense-data of a single person, since the sense-data of others cannot be known without some element of inference. This, however, must remain for the present an ideal, to be approached as nearly as possible, but to be reached, if at all, only after a long preliminary labour of which as yet we can only see the very beginning. The inferences which are unavoidable can, however, be subjected to certain guiding principles. In the first place they should always be made perfectly explicit, and should be formulated in the most general manner possible. In the second place the inferred entities should, whenever this can be done, be similar to those whose existence is given, rather than, like the Kantian Ding an sich, something wholly remote from the data which nominally support the inference. The inferred entities which I shall allow myself are of two kinds: (a) the sense-data of other people, in favour of which there is the evidence of testimony, resting ultimately upon the analogical argument in favour of minds other than my own; (b) the "sensibilia" which would appear from places where there happen to be no minds, and which I suppose to be real although they are no one's data. Of these two classes of inferred entities, the first will probably be allowed to pass unchallenged. It would give me the greatest satisfaction to be able to dispense with it, and thus establish physics upon a solipsistic basis; but those—and I fear they are the majority—in whom the human affections are stronger than the desire for logical economy, will, no doubt, not share my desire to render solipsism scientifically satisfactory. The second class of inferred entities raises much more serious questions. It may be thought monstrous to maintain that a thing can present any appearance at all in a place where no sense organs and nervous structure exist through which it could appear. I do not myself feel the monstrosity; nevertheless I should regard these supposed appearances only in the light of a hypothetical scaffolding, to be used while the edifice of physics is being raised, though possibly capable of being removed as soon as the edifice is completed. These "sensibilia" which are not data to anyone are therefore to be taken rather as an illustrative hypothesis and as an aid in preliminary statement than as a dogmatic part of the philosophy of physics in its final form.
VII. PRIVATE SPACE AND THE SPACE OF PERSPECTIVES
We have now to explain the ambiguity in the word "place," and how it comes that two places of different sorts are associated with every sense-datum, namely the place at which it is and the place from which it is perceived. The theory to be advocated is closely analogous to Leibniz's monadology, from which it differs chiefly in being less smooth and tidy.
The first fact to notice is that, so far as can be discovered, no sensibile is ever a datum to two people at once. The things seen by two different people are often closely similar, so similar that the same words can be used to denote them, without which communication with others concerning sensible objects would be impossible. But, in spite of this similarity, it would seem that some difference always arises from difference in the point of view. Thus each person, so far as his sense-data are concerned, lives in a private world. This private world contains its own space, or rather spaces, for it would seem that only experience teaches us to correlate the space of sight with the space of touch and with the various other spaces of other senses. This multiplicity of private spaces, however, though interesting to the psychologist, is of no great importance in regard to our present problem, since a merely solipsistic experience enables us to correlate them into the one private space which embraces all our own sense-data. The place at which a sense-datum is, is a place in private space. This place therefore is different from any place in the private space of another percipient. For if we assume, as logical economy demands, that all position is relative, a place is only definable by the things in or around it, and therefore the same place cannot occur in two private worlds which have no common constituent. The question, therefore, of combining what we call different appearances of the same thing in the same place does not arise, and the fact that a given object appears to different spectators to have different shapes and colours affords no argument against the physical reality of all these shapes and colours.
In addition to the private spaces belonging to the private worlds of different percipients, there is, however, another space, in which one whole private world counts as a point, or at least as a spatial unit. This might be described as the space of points of view, since each private world may be regarded as the appearance which the universe presents from a certain point of view. I prefer, however, to speak of it as the space of perspectives, in order to obviate the suggestion that a private world is only real when someone views it. And for the same reason, when I wish to speak of a private world without assuming a percipient, I shall call it a "perspective."
We have now to explain how the different perspectives are ordered in one space. This is effected by means of the correlated "sensibilia" which are regarded as the appearances, in different perspectives, of one and the same thing. By moving, and by testimony, we discover that two different perspectives, though they cannot both contain the same "sensibilia," may nevertheless contain very similar ones; and the spatial order of a certain group of "sensibilia" in a private space of one perspective is found to be identical with, or very similar to, the spatial order of the correlated "sensibilia" in the private space of another perspective. In this way one "sensibile" in one perspective is correlated with one "sensibile" in another. Such correlated "sensibilia" will be called "appearances of one thing." In Leibniz's monadology, since each monad mirrored the whole universe, there was in each perspective a "sensibile" which was an appearance of each thing. In our system of perspectives, we make no such assumption of completeness. A given thing will have appearances in some perspectives, but presumably not in certain others. The "thing" being defined as the class of its appearances, if κ is the class of perspectives in which a certain thing θ appears, then θ is a member of the multiplicative class of κ, κ being a class of mutually exclusive classes of "sensibilia." And similarly a perspective is a member of the multiplicative class of the things which appear in it.
The arrangement of perspectives in a space is effected by means of the differences between the appearances of a given thing in the various perspectives. Suppose, say, that a certain penny appears in a number of different perspectives; in some it looks larger and in some smaller, in some it looks circular, in others it presents the appearance of an ellipse of varying eccentricity. We may collect together all those perspectives in which the appearance of the penny is circular. These we will place on one straight line, ordering them in a series by the variations in the apparent size of the penny. Those perspectives in which the penny appears as a straight line of a certain thickness will similarly be placed upon a plane (though in this case there will be many different perspectives in which the penny is of the same size; when one arrangement is completed these will form a circle concentric with the penny), and ordered as before by the apparent size of the penny. By such means, all those perspectives in which the penny presents a visual appearance can be arranged in a three-dimensional spatial order. Experience shows that the same spatial order of perspectives would have resulted if, instead of the penny, we had chosen any other thing which appeared in all the perspectives in question, or any other method of utilising the differences between the appearances of the same things in different perspectives. It is this empirical fact which has made it possible to construct the one all-embracing space of physics.