“You cannot get to the end of a race-course. You cannot traverse an infinite number of points in a finite time. You must traverse the half of any given distance before you traverse the whole, and the half of that again before you can traverse it. This goes on ad infinitum, so that there are an infinite number of points in any given space, and you cannot touch an infinite number one by one in a finite time.”[41]

Zeno appeals here, in the first place, to the fact that any distance, however small, can be halved. From this it follows, of course, that there must be an infinite number of points in a line. But, Aristotle represents him as arguing, you cannot touch an infinite number of points one by one in a finite time. The words “one by one” are important. (1) If all the points touched are concerned, then, though you pass through them continuously, you do not touch them “one by one.” That is to say, after touching one, there is not another which you touch next: no two points are next each other, but between any two there are always an infinite number of others, which cannot be enumerated one by one. (2) If, on the other hand, only the successive middle points are concerned, obtained by always halving what remains of the course, then the points are reached one by one, and, though they are infinite in number, they are in fact all reached in a finite time. His argument to the contrary may be supposed to appeal to the view that a finite time must consist of a finite number of instants, in which case what he says would be perfectly true on the assumption that the possibility of continued dichotomy is undeniable. If, on the other hand, we suppose the argument directed against the partisans of infinite divisibility, we must suppose it to proceed as follows:[42] “The points given by successive halving of the distances still to be traversed are infinite in number, and are reached in succession, each being reached a finite time later than its predecessor; but the sum of an infinite number of finite times must be infinite, and therefore the process will never be completed.” It is very possible that this is historically the right interpretation, but in this form the argument is invalid. If half the course takes half a minute, and the next quarter takes a quarter of a minute, and so on, the whole course will take a minute. The apparent force of the argument, on this interpretation, lies solely in the mistaken supposition that there cannot be anything beyond the whole of an infinite series, which can be seen to be false by observing that 1 is beyond the whole of the infinite series 12, 34, 78, 1516, …

The second of Zeno's arguments is the one concerning Achilles and the tortoise, which has achieved more notoriety than the others. It is paraphrased by Burnet as follows:[43]

“Achilles will never overtake the tortoise. He must first reach the place from which the tortoise started. By that time the tortoise will have got some way ahead. Achilles must then make up that, and again the tortoise will be ahead. He is always coming nearer, but he never makes up to it.”[44]

This argument is essentially the same as the previous one. It shows that, if Achilles ever overtakes the tortoise, it must be after an infinite number of instants have elapsed since he started. This is in fact true; but the view that an infinite number of instants make up an infinitely long time is not true, and therefore the conclusion that Achilles will never overtake the tortoise does not follow.

The third argument,[45] that of the arrow, is very interesting. The text has been questioned. Burnet accepts the alterations of Zeller, and paraphrases thus:

“The arrow in flight is at rest. For, if everything is at rest when it occupies a space equal to itself, and what is in flight at any given moment always occupies a space equal to itself, it cannot move.”

But according to Prantl, the literal translation of the unemended text of Aristotle's statement of the argument is as follows: “If everything, when it is behaving in a uniform manner, is continually either moving or at rest, but what is moving is always in the now, then the moving arrow is motionless.” This form of the argument brings out its force more clearly than Burnet's paraphrase.

Here, if not in the first two arguments, the view that a finite part of time consists of a finite series of successive instants seems to be assumed; at any rate the plausibility of the argument seems to depend upon supposing that there are consecutive instants. Throughout an instant, it is said, a moving body is where it is: it cannot move during the instant, for that would require that the instant should have parts. Thus, suppose we consider a period consisting of a thousand instants, and suppose the arrow is in flight throughout this period. At each of the thousand instants, the arrow is where it is, though at the next instant it is somewhere else. It is never moving, but in some miraculous way the change of position has to occur between the instants, that is to say, not at any time whatever. This is what M. Bergson calls the cinematographic representation of reality. The more the difficulty is meditated, the more real it becomes. The solution lies in the theory of continuous series: we find it hard to avoid supposing that, when the arrow is in flight, there is a next position occupied at the next moment; but in fact there is no next position and no next moment, and when once this is imaginatively realised, the difficulty is seen to disappear.

The fourth and last of Zeno's arguments is[46] the argument of the stadium.