The argument as stated by Burnet is as follows:
| First Position. | Second Position. | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| A | . | . | . | . | A | . | . | . | . | |||
| B | . | . | . | . | B | . | . | . | . | |||
| C | . | . | . | . | C | . | . | . | . | |||
“Half the time may be equal to double the time. Let us suppose three rows of bodies, one of which (A) is at rest while the other two (B, C) are moving with equal velocity in opposite directions. By the time they are all in the same part of the course, B will have passed twice as many of the bodies in C as in A. Therefore the time which it takes to pass C is twice as long as the time it takes to pass A. But the time which B and C take to reach the position of A is the same. Therefore double the time is equal to the half.”
Gaye[47] devoted an interesting article to the interpretation of this argument. His translation of Aristotle's statement is as follows:
“The fourth argument is that concerning the two rows of bodies, each row being composed of an equal number of bodies of equal size, passing each other on a race-course as they proceed with equal velocity in opposite directions, the one row originally occupying the space between the goal and the middle point of the course, and the other that between the middle point and the starting-post. This, he thinks, involves the conclusion that half a given time is equal to double the time. The fallacy of the reasoning lies in the assumption that a body occupies an equal time in passing with equal velocity a body that is in motion and a body of equal size that is at rest, an assumption which is false. For instance (so runs the argument), let A A … be the stationary bodies of equal size, B B … the bodies, equal in number and in size to A A …, originally occupying the half of the course from the starting-post to the middle of the A's, and C C … those originally occupying the other half from the goal to the middle of the A's, equal in number, size, and velocity, to B B … Then three consequences follow. First, as the B's and C's pass one another, the first B reaches the last C at the same moment at which the first C reaches the last B. Secondly, at this moment the first C has passed all the A's, whereas the first B has passed only half the A's and has consequently occupied only half the time occupied by the first C, since each of the two occupies an equal time in passing each A. Thirdly, at the same moment all the B's have passed all the C's: for the first C and the first B will simultaneously reach the opposite ends of the course, since (so says Zeno) the time occupied by the first C in passing each of the B's is equal to that occupied by it in passing each of the A's, because an equal time is occupied by both the first B and the first C in passing all the A's. This is the argument: but it presupposes the aforesaid fallacious assumption.”
| First Position. | Second Position. | |||||||
|---|---|---|---|---|---|---|---|---|
| B · | B′ · | B″ · | B · | B′ · | B″ · | |||
| A · | A′ · | A″ · | A · | A′ · | A″ · | |||
| C · | C′ · | C″ · | C · | C′ · | C″ · | |||
This argument is not quite easy to follow, and it is only valid as against the assumption that a finite time consists of a finite number of instants. We may re-state it in different language. Let us suppose three drill-sergeants, A, A′, and A″, standing in a row, while the two files of soldiers march past them in opposite directions. At the first moment which we consider, the three men B, B′, B″ in one row, and the three men C, C′, C″ in the other row, are respectively opposite to A, A′, and A″. At the very next moment, each row has moved on, and now B and C″ are opposite A′. Thus B and C″ are opposite each other. When, then, did B pass C′? It must have been somewhere between the two moments which we supposed consecutive, and therefore the two moments cannot really have been consecutive. It follows that there must be other moments between any two given moments, and therefore that there must be an infinite number of moments in any given interval of time.
The above difficulty, that B must have passed C′ at some time between two consecutive moments, is a genuine one, but is not precisely the difficulty raised by Zeno. What Zeno professes to prove is that “half of a given time is equal to double that time.” The most intelligible explanation of the argument known to me is that of Gaye.[48] Since, however, his explanation is not easy to set forth shortly, I will re-state what seems to me to be the logical essence of Zeno's contention. If we suppose that time consists of a series of consecutive instants, and that motion consists in passing through a series of consecutive points, then the fastest possible motion is one which, at each instant, is at a point consecutive to that at which it was at the previous instant. Any slower motion must be one which has intervals of rest interspersed, and any faster motion must wholly omit some points. All this is evident from the fact that we cannot have more than one event for each instant. But now, in the case of our A's and B's and C's, B is opposite a fresh A every instant, and therefore the number of A's passed gives the number of instants since the beginning of the motion. But during the motion B has passed twice as many C's, and yet cannot have passed more than one each instant. Hence the number of instants since the motion began is twice the number of A's passed, though we previously found it was equal to this number. From this result, Zeno's conclusion follows.
Zeno's arguments, in some form, have afforded grounds for almost all the theories of space and time and infinity which have been constructed from his day to our own. We have seen that all his arguments are valid (with certain reasonable hypotheses) on the assumption that finite spaces and times consist of a finite number of points and instants, and that the third and fourth almost certainly in fact proceeded on this assumption, while the first and second, which were perhaps intended to refute the opposite assumption, were in that case fallacious. We may therefore escape from his paradoxes either by maintaining that, though space and time do consist of points and instants, the number of them in any finite interval is infinite; or by denying that space and time consist of points and instants at all; or lastly, by denying the reality of space and time altogether. It would seem that Zeno himself, as a supporter of Parmenides, drew the last of these three possible deductions, at any rate in regard to time. In this a very large number of philosophers have followed him. Many others, like M. Bergson, have preferred to deny that space and time consist of points and instants. Either of these solutions will meet the difficulties in the form in which Zeno raised them. But, as we saw, the difficulties can also be met if infinite numbers are admissible. And on grounds which are independent of space and time, infinite numbers, and series in which no two terms are consecutive, must in any case be admitted. Consider, for example, all the fractions less than 1, arranged in order of magnitude. Between any two of them, there are others, for example, the arithmetical mean of the two. Thus no two fractions are consecutive, and the total number of them is infinite. It will be found that much of what Zeno says as regards the series of points on a line can be equally well applied to the series of fractions. And we cannot deny that there are fractions, so that two of the above ways of escape are closed to us. It follows that, if we are to solve the whole class of difficulties derivable from Zeno's by analogy, we must discover some tenable theory of infinite numbers. What, then, are the difficulties which, until the last thirty years, led philosophers to the belief that infinite numbers are impossible?
The difficulties of infinity are of two kinds, of which the first may be called sham, while the others involve, for their solution, a certain amount of new and not altogether easy thinking. The sham difficulties are those suggested by the etymology, and those suggested by confusion of the mathematical infinite with what philosophers impertinently call the “true” infinite. Etymologically, “infinite” should mean “having no end.” But in fact some infinite series have ends, some have not; while some collections are infinite without being serial, and can therefore not properly be regarded as either endless or having ends. The series of instants from any earlier one to any later one (both included) is infinite, but has two ends; the series of instants from the beginning of time to the present moment has one end, but is infinite. Kant, in his first antinomy, seems to hold that it is harder for the past to be infinite than for the future to be so, on the ground that the past is now completed, and that nothing infinite can be completed. It is very difficult to see how he can have imagined that there was any sense in this remark; but it seems most probable that he was thinking of the infinite as the “unended.” It is odd that he did not see that the future too has one end at the present, and is precisely on a level with the past. His regarding the two as different in this respect illustrates just that kind of slavery to time which, as we agreed in speaking of Parmenides, the true philosopher must learn to leave behind him.