In 1827 a valuable improvement was made to the machine of civilization by Ohm, who announced the now famous Ohm's Law, that the strength of an electric current in any circuit is equal to the difference in potential of the ends of the circuit, divided by its resistance. This is usually expressed by writing C = E/R.

Can anything be less inspiring than C = E/R? Yes:—few things have been more inspiring. Few things have inspired more zeal for work than that simple formula. That simple formula evolved order out of chaos in the little but super-important world, in which physicists and chemists were trying to solve the riddles that the utilization of electric currents presented. It gave them a basis from which to start, and a definite rule to work by. No oration of Demosthenes, Cicero or Webster has imparted more inspiration, or supplied a greater stimulus to high effort, or done more for human kind than C = E/R.

In 1827 Walker in the United States invented friction matches. It seems strange that someone had not invented matches before. The usual way of getting light was with the flint and steel and tinder-box,—a most inconvenient contrivance. It was quite well known that certain substances would ignite when rubbed, and yet men waited until 1827 to utilize the fact in matches!

In the following year Wöhler succeeded in reducing aluminum, thus contributing a valuable new factor to human knowledge and a valuable new metal to human needs. In the same year Neilson took out a patent in England for "an improved application of air to produce heat in fires, forges and furnaces," in which he proposed to pass a current of heated air through the burning fuel. His invention met with opposition of all kinds, but eventually proved its usefulness. Another invention produced in the same year was Woodworth's machine for planing wood. Still another, was the tubular boiler for locomotives.

In 1829 the first steam locomotive was put into use in the United States. No especial invention seems to have been expended on this device; but there was considerable invention of the kind that I have ventured to call "opportunistic" involved in conceiving the idea of getting the locomotive, and then in actually getting it, and then putting it to work. In the following year Braithwaite and Ericsson in London brought out the first portable fire-engine. There was a great deal of invention of the practical kind involved in the design, construction, production and successful employment of this novel device; and an important step was taken in the means of protecting life and the material products of civilization from destruction by fire.

In 1831 Faraday in London made one of the most important discoveries in physical science ever made, the discovery that if a current of electricity is changed in strength, or if a conductor carrying a current be moved, an instantaneous magnetic effect is felt in the vicinity; and that this magnetic effect will cause an instantaneous current in any closed conducting circuit that may be near. Faraday also discovered that a similar instantaneous current will be set up in a closed circuit if a magnet be moved in its vicinity. This discovery is usually spoken of as the discovery of electro-magnetic induction; and the instantaneous currents are said to be "induced."

About the same time Professor Henry in Princeton discovered that an electric circuit will act not only on other circuits in its vicinity, but on itself; that the fact of being increased or decreased will set up instantaneous currents that tend to oppose the increase or decrease. Thus, while Faraday is credited with the discovery of electro-magnetic induction, Henry is credited with the discovery of self-induction. It has been claimed by some that Henry discovered electro-magnetic induction before Faraday did. This question is of great interest but it is outside the scope of this modest volume.

While both discoveries were of prime importance, and were also analogous, that of electro-magnetic induction has played the more conspicuous part. With it began the endeavor to develop electric currents by the relative motion of coils of wire and magnets, that resulted in the invention of the dynamo, and the later invention of electric lights and motors.

In the same year the discovery (or was it the invention?) of chloroform was made by Guthrie in America, Soubeiran in France and Liebig in Germany. A curious fact connected with the early history of chloroform is that, although its anæsthetic properties were known in general, and although the idea of using gases and vapors and medicines to deaden pain was many centuries old yet nevertheless, chloroform was not put to practical use until about 1846 when Dr. Morton, a dentist, of Boston, adopted it as an anæsthetic. Of all the single inventions ever made, chloroform has unquestionably done more than any other, invented till that time, to give relief from agony.

In 1832 the electric telegraph was invented by Morse, though he did not patent it until 1837. The influence of the electric telegraph on subsequent history has been so great that the influence of no contemporary invention can reasonably be declared to be greater. As with many other inventions, one is tempted to wonder why it had not been invented before; for the fact that electricity could be sent along a conductor and made to cause motion at the other end had been known since Guericke had demonstrated the fact in the closing years of the seventeenth century. The original invention of the electric telegraph is claimed by some for Henry, who had a wire run between his house and his laboratory at Princeton, over which he sent messages, by opening and closing the circuit and thereby actuating an electro-magnet at the receiving end.