The first machine to put Faraday's discovery of magneto-electric induction to practical use was invented by Pixii in France in 1832, and exhibited before the Academy of Sciences. It consisted of a powerful magnet that was made to revolve with great rapidity before a bar of soft iron that had wrapped around it a coil of insulated wire about 3,000 feet long. The north and south poles taking position in succession in front of the coil, currents were induced that alternated in direction, twice in each revolution. If a man grasped two wires in the circuit he received a series of sharp electric shocks; but such effects as decomposing water that were produced by the continuous currents of Voltaic batteries could not be produced by these alternating currents. To secure such effects, Siemens and others made machines in which the magnet in the form of a U was stationary, two coils of wire revolved in front of the poles, and a two-part "commutator" was used. When this was placed on the axle, and the axle was revolved, the change in direction of the current was obviated, though a smooth and uniform current was not produced. The reason was that the current fell to zero twice in each revolution.
The magneto-electric machine, as it was called, remained virtually in this form for many years. It was not sufficiently effective or efficient to be of much practical usefulness in any art, and was considered more of a scientific toy than a machine of serious importance. Still, the probability was realized by many investigators that a new discovery or invention might be made at any moment, that would put it in the forefront of the useful inventions of the age. (The invention was not made till 1862; it was made by Pacinnotti in Italy and will be mentioned later.)
The influence of the magneto-electric machine, therefore was not direct, but indirect. It was a basic invention; and like many basic inventions, it formed the hidden foundation on which a conspicuous superstructure was later to be reared. One of the lessons of history is that it is the men and the methods and the other things which are in evidence when some important occurrence happens, that are identified with it in the minds of people not only at the time, but afterward. An invention that may have cost its creator the toil and struggle of a lifetime may not gain success simply because of some existing unfavorable conditions of some kind. Suddenly the conditions become favorable. John Doe takes advantage of all the work that other men have done, adds some slight improvement, achieves "success" and dons the laurel wreath.
We see at this time (1832) very clear signs of an increasing number of inventions per year, an increasing speed of invention. We see an acceleration in invention which we cannot help associating in our minds with the acceleration which any material object gets, when continuously subjected to a uniform force, like that of gravity. One almost feels that there must be a continuous force impelling men to invent; so clear is the increase of the speed of inventing.
Following the magneto-machine in 1832 came the invention of a rotary electric motor by Sturgeon, the discovery of chloral-hydrate by Liebig, the production of the first large American locomotive by Baldwin and the invention of link motion by Sir Henry James. The last was an exceedingly important and ingenious contribution to the steam engine, especially in locomotives and ships; for it gave a very quick and sure means of reversing its direction of motion, and of regulating the travel of the valve and the degree of expansion of the steam. In the following year came Stephenson's steam whistle; and in the year following (1834) came the McCormick reaper. Few inventions have had a greater or a more immediate effect on the trend of modern progress, which is to influence men to live in large communities. For the McCormick reaper could do so much more work, and so much better work, than men could do without it, that the cultivation of extensive areas of land could be undertaken with the assurance that large crops of grain could be secured. This not only secured more grain for the country, but liberated many men from toil on farms, and permitted them to migrate to the cities.
The author does not wish to be understood as meaning that migration to cities is wholly desirable; for he is familiar with its disadvantages and dangers. But whether it be desirable or not is beyond the scope of this book. This book is merely a modest attempt to point out the influence of invention in making the world what it is today. Perhaps it would have been better if men had had no invention and had remained in a state of savagery. Some men say so sometimes; but even those men (or most of them) like to sit by a warm fire in a cozy room when it is cold outdoors. The consensus of opinion seems to be that civilization in the main has been a blessing to men, though not an unmixed blessing, and though men must keep on their guard against certain manifest dangers which civilization entails.
In the same year, 1834, Jacobi invented an electric motor and Runge made the important discovery of carbolic acid. In 1835 Burden invented a horse-shoe machine. In 1836 four important inventions added four important parts to our rapidly growing Machine.
The first was the "constant battery" invented by Daniell. Before this time a Voltaic cell, or battery, soon lost its strength, because of various chemical actions inside the cell which need not be detailed here. Daniell overcame this difficulty almost wholly by inventing a battery, in which there were two liquids instead of one, and the two liquids were in two separate compartments but separated only by porous material. This invention was successful from the start, and immediately increased the usefulness of Voltaic batteries and the means of utilizing electric currents.
The second great invention in 1836 was that of acetylene gas made by Edmund Davy. It is still the most brilliant illuminating gas we have, and is rivaled by the electric arc-light only. The third invention was that of the revolver, made by Samuel Colt.
It may be objected by some that the revolver did not contribute anything valuable to the Machine of Civilization because it was merely an improvement on the pistol, and enabled one to kill more men in a given time than he could before. Such an objection would have much to justify it; but it may be pointed out that the Machine must be made self-protective as far as possible; and that anything which increases the power of civilized man as against the savage, or barbarous, or semi-barbarous increases its power of self-protection. It is true that a savage can use a revolver, if he be instructed; but the more complicated a weapon is the more difficult it is for a savage, as compared with a civilized man, to use it effectively. This is not an argument in favor of complication for its own sake; but it is an argument in favor of accepting complication in a weapon, if the complication renders greater effectiveness possible.