The last invention was the most important of the four, the application of the screw propeller to navigation made by John Ericsson. The author is aware of the fact that this invention was claimed by others, and is claimed for others now. The weight of testimony, however seems to be on the side of Ericsson; and as has been pointed out before, the question of the identity of the inventor is not important to our discussion. The first ocean steamship to be propelled by a screw was the Stockton, which was built in England under Ericsson and fitted with his screw. The first war-ship to be fitted with a screw was the U. S. S. Princeton in 1841. Its screw was designed by Ericsson.

In 1837 Crawford invented a process for "galvanizing" iron; for electro-plating it with a non-oxidizable metal. The value of this invention in preserving iron wire and iron articles in general needs not to be pointed out; it was a contribution to the permanency of the Machine. In the same year, Cooke and Wheatstone in England invented their famous "Needle Telegraph," in which a magnetic needle was made to deflect quickly to the right or left when one of two keys was pressed by an operator and letters thereby signaled. This invention was a valuable contribution; but it was eventually superseded by Morse's telegraph, after that system had established itself in the United States and on the Continent.

In 1839 Babbitt invented his celebrated Babbitt metal, which has been successfully used ever since in the bearings of engines and in moving machinery generally, for reducing friction; and in the same year Goodyear made an invention even more important, the art of hardening, or "vulcanizing," rubber by means of sulphur. This invention was a great boon to mankind, but not to Goodyear; for the jackals who lie in wait for great inventions eager to wrest unearned profit for themselves from the men who have truly earned it, made Goodyear's life miserable for many years. Before he died, however, his wrongs were righted at least in part. In the same year Jacobi, in Germany, propelled a boat by electricity using an electric motor of his own invention.

But the great contributions made in 1839 were to the art of what we now call photography. About 1834 Talbot had succeeded in taking pictures in a camera by the agency of light on paper washed with nitrate of silver and also in fixing them. Later, he was able to obtain many copies, or "proofs," from one picture or negative. It seems that he did not publicly announce his invention till 1839. To it was given the name "calotype." In May of that year Mr. Mungo Ponton announced that he had been able to copy pictures of engravings and of dried plants on paper that he had soaked in bichromate of potash. A number of other investigators forthwith announced similar feats, using various chemical solutions.

In 1840 Draper published the result of certain important experiments made by him in photographing celestial bodies. In 1841 pneumatic caissons were invented by Triger in France. In 1842 Long discovered the usefulness of ether as an anæsthetic, and Seytre invented the automatically played piano. In the same year, Selligne discovered a method of utilizing water-gas, made by decomposing water and producing a new illuminating agent that could be used by itself or in combination with coal gas. In the same year James Nasmyth in Scotland invented the steam hammer—a simple appliance by means of which steam was able to make a hammer give blows much heavier than the human arm could give. This invention belongs to the class in which the human muscles are assisted in doing work which the brain directs them to do, but which they are not strong enough to do effectively.

The self-playing piano belongs in a class closely allied, in which the machine invented merely assists the muscles: the assistance in this class being not in supplying power in order to do more work, however, but in supplying what may be called auxiliary physical agencies. In the player piano, the fingers are replaced by little mechanical hammers; in the steam hammer the arm is replaced by a piston actuated by steam. One secures quickness, the other secures force.

But the self-playing piano and the steam hammer are in very different classes, when viewed from the standpoint of their influence on history. The influence of the piano is scarcely discernible, while the influence of the steam hammer stands out in enormous letters of steel. The piano seems to be in the same category as are literature and poetry and music in general: it serves to please. The steam-hammer, on the other hand, has had so great an influence on history subsequent to its invention, that we know that subsequent history could not have been as it has been, if the steam hammer had not been invented.

It has been the steam hammer and the ensuing modifications of it that have made possible the making of large forgings of iron and steel. It has been the large forgings of iron and steel that have made possible the use of large solid masses of those metals in the construction of engines, guns, shells, houses, bridges and ships. It is the ability to use large and solid masses of iron and steel, free from holes and seams, that has enabled constructors and engineers to produce the tremendous engineering structures that characterize today. The main element in the progress of the race has been its triumph over the forces of material Nature. This triumph has been gained by inventors, who conceived of certain methods and devices (clothing, for instance) by means of which materials provided by Nature could be utilized by man to protect himself against her attacks upon him—attacks by cold, for instance. Inventions of the useful kind have had a history of their own, as definite as the history of any other thing or things, in which it is shown that every useful instrument or method has been succeeded by another and better; so that the history of useful inventions may be compared to a picture of men mounting a flight of stairs toward civilization, the steps of the stairs being the successive useful inventions of different kinds.

The paragraph just written is not intended to mean that inventions which please have no value, but merely to point out the difference between what are aptly called the fine arts and the useful arts. There would be little happiness given to man by toilsomely climbing the stairway to civilization, unless he were occasionally cheered on the way by a strain of music, or a beautiful painting, or a poem, or a brisk walk in northwest weather, or a gladdening glass of wine. It may be argued that these are the things that really give happiness; it may be claimed that these things go direct to the seat of happiness in the brain, but that steam hammers merely provide a material civilization, which continuously promises to make men happier some day, but never makes them happier.

Verily, verily, the way to happiness is not so clearly marked, that anyone can walk in it all the time, or even for five minutes, except on rare occasions. The consensus of opinion seems to be, however, that the civilized man is, on the whole, happier than the savage; that civilization is preferable to savagery. It is the purpose of this book, moreover, merely to point out that that structure of civilization has become so complicated and is moving so fast that it is now a veritable machine and to indicate the part that invention has taken in building it.