It was also in 1865 that Bullock invented his web-feeding printing press, and Dodge invented the automatic shell-ejector for firearms. In 1866 Siemens and Martin invented the open-hearth process for steel making, Burleigh the compressed air rock-drill, and Whitehead the automobile torpedo.
The Whitehead torpedo was an invention of the highest order of brilliancy of conception; but, unlike many other inventions of this class, it has been a matter of the utmost difficulty to develop it. The possible usefulness suggested was so great that the principal European nations, especially the Germans and English, went about its development at once; but the practical difficulties encountered were so many and so great, and the opportunities of testing out its usefulness in actual warfare were so few, that it was not until after its successful and important use in the war between Russia and Japan in 1904–1905, that the torpedo was accepted as a major weapon. This invention is one of the most important contributions ever made to the self-protectivity of the Machine of Civilization; not only because of its immediate usefulness in war, but because its complexity necessitates such skill and knowledge in the operators, and its cost is so great, that only the most wealthy and highly civilized nations are able to use it successfully. As has been pointed out repeatedly in this book, one of the influences of invention on history has been to urge nations to a high degree of civilization, under pain of greater or less subjection to nations more highly civilized.
In 1866 Wilde in England and Siemens in Germany invented dynamo electric machines, in which the magnetic field was made, not by permanent steel magnets, but by electro-magnets of soft iron that were energized by the current which the machine itself produced. This was an invention of the utmost practical value; but who was the actual inventor does not seem to be exactly known. Its main value is in its ability to produce a much more powerful current than could be produced when using permanent magnets; caused by the fact that electro-magnets can create a "magnetic field" much stronger than steel magnets can.
In 1867 Tilghman invented his sulphite process for pulp making, and in 1868, Moncrief invented his famous disappearing gun-carriage. This was an invention requiring a high order of conception and constructiveness; it resulted in a considerable improvement in the art of sea-coast defense, and therefore in the self-protectiveness of the Machine, by keeping the guns safe behind fortifications except when actually being fired. Moncrief's carriage, although originally very good, has been improved upon from time to time; whenever the progress of the mechanic arts has made it possible, and some inventor has realized the fact.
Attention is here requested to the last clause in the last sentence. As civilization has progressed and various inventions have been made, the whole field of possible future invention has been narrowed, but a field of clear though limited opportunity has been mapped out. Each invention narrows the field by removing the opportunities for making that especial invention: after the printing press had been invented, for instance, the number of possible inventions was reduced by one; but see what a field for future invention was mapped out, and what immeasurable opportunities were suggested! Nevertheless, opportunity does not produce inventions, it merely invites them; and we have occasionally noted in this book that the opportunity to make a certain invention had existed for ages before it was realized: for instance, the sewing-machine and the little stethoscope.
In 1868 Sholes invented what is usually considered the first practical typewriting machine. The machine that Thurber had invented in 1843 had never been developed to a practical stage, and, consequently, it was not itself a direct contribution to the Machine. Whether it paved the way for Sholes's is a debatable point; if it did, it was an indirect contribution, like Hero's engine. Not for several years after 1868 did the typewriter take its place in the Machine: but now it plays an exceedingly useful, if not conspicuous, part in making it operate day after day.
In the same year Nobel contributed another of his notable inventions, and called it dynamite. It was the development of an exceedingly brilliant and original idea; and, as often happens with conceptions of that kind, it was easily developed into a concrete, usable and useful thing. It consisted merely in mixing nitro-glycerin with about an equal quantity of very finely divided earth. The resulting mixture was much less sensitive to shock and therefore much safer to handle than nitro-glycerin. It supplied the factor needed to render the utilization of nitro-glycerin possible, and therefore it was a valuable contribution to the Machine. In the same year, Mege invented oleomargarine, a comparatively inexpensive substitute for butter, and therefore an important factor in furthering the health and comfort of the poorer classes and a considerable forward step.
Shortly after 1866, Mrs. Eddy declared to many people that she had made a discovery which enabled her to cure the sick with Divine aid, and without the use of drugs. She healed many people and gradually gathered followers. In a few years, she developed a religion that is now called Christian Science; and in 1875 she published a book called "Science and Health, with Key to the Scriptures." Since then, the number of her followers has increased enormously, and Christian Science Churches have been erected in all the civilized countries of the world. Though the doctrines of Christian Science have not been accepted by many Christians, the great opposition directed toward them at first has now been largely overcome; and it is admitted by most fair-minded people that Christian Science seems to have made an important contribution to the spiritual, mental and physical welfare of mankind.
In 1868, Westinghouse made his epochal invention, the railway air-brake. It was the result of a brilliant mental conception that was put into practical form without very serious difficulty. At first sight, this invention might not be considered of very great importance, because one might assume that its only office was to prevent collisions and consequent loss of life and property. Doubtless that was its only direct effect; but its indirect effect was to increase the confidence of the people in the safety of railway travel, consequently the number of people who traveled, consequently the prosperity of the railway companies, consequently the faith of people in railway investments, consequently the number and magnitude of railway projects, consequently the number and length of railways, consequently the speed and general excellence of transportation and communication over the land in every civilized country, and consequently the coherency and operativeness of the entire Machine.