In 1890, Krag-Jorgensen invented the famous rifle of that name. In the following year, Branly invented the coherer mentioned on page 305, and Parsons invented his rotary steam turbine. The steam turbine was an improvement over the reciprocating steam engine for many classes of work, great and small. The first steam engine invented by Hero was a rotary engine, but it was of course, most uneconomical of steam. The first steam engine that was really efficient was the reciprocating engine produced by Watt. The greatest single defect of rotary engines has always been the loss of steam in going by the rotating parts without doing any work, a defect existing in only a small degree with the closely fitting pistons of reciprocating engines. In the turbines invented by Parsons and others about the same time, wastage of steam was prevented by various means that need not be detailed here, and smooth motion of the rotary engine at the same time secured. The greatest benefit accrued probably to ocean steamships, in which the absence of vibration, and the saving in weight, space and number of attendants required were features of great practical importance.

About 1890, Edison invented the kinetograph and kinetoscope, after a long series of investigations and experiments. These followed the experiments made by Dr. Muybridge some years before, in which he had taken many successive pictures of horses at very short intervals, by means of as many separate cameras, (twelve pictures in one stride for instance), and afterwards reproduced them in such a way as to show horses in rapid motion. They came also after Eastman's kodak, in which pictures could be taken successively, on a traveling film. In the kinetograph, only one object glass was used; and the film was drawn along behind it in such a way that, at predetermined intervals, the film was stopped and a shutter behind the object glass or lens was moved away, and a picture taken. The moving mechanism (at first the human hand) continuing in motion, the shutter was closed and the film was moved along a short distance, so as to bring another part behind the object glass. Then the same operation was repeated—and so on. In the kinetoscope, the operation was reversed, in the sense that the pictures taken were presented successively to the eye of the observer. In the first form, the observer looked at them through a peep-hole: but in the latter forms, the pictures have been thrown upon a screen—somewhat as from a magic lantern, and become the "movie" of today.

Here, again, we see an invention of the highest order in each of the three essentials—conception, development and production. No invention exists of a higher order. As to their use and usefulness, we are most familiar with them in moving pictures. Whether it is for the public good to produce so many shows for idly disposed men and women to spend their time in looking at, is perhaps a possible subject for enlightening discussion. But the moving picture is used for many purposes, especially for purposes of education and research, besides that of mere amusement, and will unquestionably be so used, more and more as time goes on. One of its most obvious spheres of usefulness is in making photographs of movements that are very rapid, and then analyzing and inspecting those photographs when presented very slowly, and when stopped. Another is in taking photographs of successive situations that have occurred at considerable intervals of time, and then presenting the pictures quickly, and thus showing a connected story. By dealing in this way with historical incidents, we can get a realization of the interdependence of those incidents that we cannot get in any other way, and see how cause has produced effects, and effects have come from causes. Similarly, the work of building any large structure can be shown by presenting rapidly a series of photographs taken at different stages; and so can the growth of a plant or animal, and almost any kind of progress.

Let us impress on our minds the fact that if we read any book, or witness any occurrence, or listen to any argument, or receive any instruction of any kind, the only value comes to us from the pictures made on our mental retinas and the permanence and clearness of the records impressed. Thus, any means that can impress us quickly with the most important pictures must be of the highest practical value, both in prosecuting studies of events, and in gathering conclusions from them. In fact, the kinetograph and the kinetoscope are simply Edison's imitation of the operations carried on inside the skull of each of us; for we are continually taking moving pictures of what we see and hear and read and feel; recording them on our own moving sensitized films, and bringing them before our mental gaze at our own volition and sometimes in spite of it.

In 1890, the author of this book patented "A Method of Pointing Guns at Sea" that has been adopted in all the great navies, under the name "Gun Director System." In 1891 he patented a modification under the name "Telescopic Sight for Ships Guns." These two inventions are used in every navy in the world, have increased the effectiveness of naval gunnery immeasurably, and have, therefore, been important contributions to the self-protectiveness of the Machine.

In 1893, Acheson invented his process for making carborundum, a compound of carbon and silicon, made in the electric furnace, and used for abrasive purposes; and in the same year Willson made carbide of calcium from carbon and quick-lime, also in the electric furnace. In 1895, Linde invented his process of liquefying air, and the first installation of great electric locomotives was effected: this was in the Baltimore and Ohio tunnel. In the same year, Röntgen made the epochal discovery of what he called by the significant name "X-rays," a name that still clings to them.

They were discovered by Röntgen in the course of his researches with cathode rays. His discovery was in effect that electric rays emanated from the part of the tube struck by the cathode rays. They were not cathode rays, though produced by them, and had the amazing property of penetrating certain insulating substances, such as ebonite, paper, etc., while not penetrating metals, except through short distances. Unlike the cathode rays, they were not deflected by magnets; and neither did they seem to be reflected or refracted similarly. Their most important property was that of acting photographically on sensitized plates, even when in closed slides, and wrapped carefully in black paper.

The greatest usefulness of the X-rays thus far made has been in photographing internal parts of the human body; for the rays pass through certain parts less readily than through other parts; through bones for instance, less readily than through soft parts. Fractures or displacements of bones can therefore be readily detected. So also can the formation of pus in cavities, and the appearance of abnormal products of many kinds. To this discovery we must give a rank as high as almost any other that we have noted in this book, though we cannot tell, of course, how long it will hold it. With mechanical and scientific inventions, as with books and poems and inventions of other kinds, the question of permanence of value or of usefulness cannot be decided until after many years.

One of the curious properties of X-rays is that of rendering the air through which they pass a conductor of electricity. So far as the author is aware, no invention of practical usefulness has yet been made, based upon this property.

In 1896, Marconi brought out the first practically successful system of wireless telegraphy, Finsen demonstrated the usefulness of certain rays of the spectrum for treating certain skin diseases, and Becquerel discovered what have since been called the Becquerel rays. In experimenting with X-ray photography, he found that a sensitized plate, though covered with black paper, was acted on not only by X-rays, but also by the metal uranium and certain of its salts; and he also found that the mere presence of uranium made the contiguous air a conductor, as did the X-or Röntgen rays. The amazement caused by the discovery of such undreamed-of properties, especially in so commonplace a substance as uranium had been supposed to be, can easily be imagined; and it is plain why strenuous efforts were made at once by scientific people, to see if other substances did not possess those properties also. As a result, it was soon found that other bodies did possess them. To those bodies that seem to possess the quality of radiating activities of certain kinds, the adjective radio-active has been applied. The most important radio-active elements are uranium, thorium and radium, of which the last is immeasurably the most active and important. Radium was discovered in 1898 by M. and Madame Curie and M. Bémont, while experimenting with the uranium mineral pitchblende. It seemed to some people at the time to challenge the theory of the conservation of energy, and to threaten the destruction of the whole science of Physics, by emanating energy without loss to itself. It has since been found, of course, that radium does give up part of its substance; that it disintegrates in fact, as a result of its emanations.