How great an influence the discovery of radium is going to exert, it is now impossible to predict with confidence; but it is manifest that the three successive and allied discoveries of cathode rays, X-rays and radium have introduced a new and growing science into the Machine; and it is seemingly possible that that science may, soon or tardily, ascertain the nature of the atom, and even teach us to divide it. It seems that an atom of radium does actually disintegrate, and by disintegrating give out energy. The energy it gives out is so enormous in proportion to the mass which gives it out, as to suggest to us an almost infinite source of available power, if other substances can be made to disintegrate. It is said that one gramme of radium can emit a quantity of heat of about 100 calories per hour; that is enough heat to raise 100 grammes of water a 1° centigrade in temperature, by simply existing. It is true that radium is the most expensive article in the world; but that is only because of the difficulties of obtaining it at present. Now if radium is so potentially powerful and disintegrates so easily, it seems possible that other substances less easily disintegrable could emit greater energy, if (or when) a means is discovered for disintegrating them.

The interesting question now suggests itself of what would happen if some man should some day discover accidentally a means of disintegrating—say carbon—and should unintentionally disintegrate a few tons of coal in Wall Street. We know what has happened at times when piles of explosives have been accidentally detonated. But explosives are merely chemical compounds, and, compared to atoms of radium are relatively microscopic in the energy developed when broken up. We remember the story of the commotion caused by the monk's experiment in making powder, when the mixture exploded and hurled the pestle out of the mortar and across the room. Imagine a few tons of carbon atoms exploding.

In 1894 a war, long presaged, broke out between China and Japan. In 1854, when Commodore Perry went to Japan, and gave a virtual ultimatum that resulted in Japan's opening her seaports to the commerce of the world, China and Japan were on the same plane of civilization, though China was many times greater in area and population. But the people of Japan were different from those of China in the essential mental characteristic of imagination,—at least their rulers were. For those rulers, noting the superior power of the foreign war-ships as compared with theirs, and reasoning from this to the conditions of the countries that produced those war-ships, and that produced also the implements of war on board that were so much superior to the Japanese, made a mental picture of what would happen to Japan some day, when those war-ships should come to Japan and demand submission. To make such a picture did not require much imagination, maybe; but the fact seems to be that no other Asiatic nation, and no African nation, made it. Then the Japanese made another picture, that required imagination of a brilliant kind; and that was a picture of Japan learning the arts of the foreign devil, and then utilizing those arts to keep the foreign devil himself at bay.

To us, looking back on the perfectly clear record of performance that Japan has made since then, that performance may seem not very difficult either to attempt or to achieve. But no other nation in the history of the world has ever paralleled it, or even approximated it. To appreciate it, one must exert all the imagination of which he is capable, and see himself in Japan as Japan was in 1854, amid all the influences of the history and environment then prevailing, with all their accompaniments of ignorance, prejudice, inertia and racial pride. It is the consensus of opinion throughout the world that the performance of Japan since 1854 has been amazing. It is part of the humble effort of this book to show that, in all great achievements, the result should be attributed mainly to the estimate originally formed of the situation, and the decision (invention) made to meet it. "C'est le premier pas qui coute": the rest follow as results.

The war between China and Japan, and in greater degree the result of that war, give clear and impressive demonstrations of the influence of invention on history; because the victors were victors simply because they had taken advantage of the inventions made in Europe and America. There was no marked difference physically in favor of the Japanese. Whether there was morally, we have no means of judging. Was there a difference mentally? We have an excellent means of judging this,—the fact that the Japanese had made a correct estimate of the situation and come to a correct decision, while the Chinese had not.

In the war that occurred ten years later, between Japan and Russia, the influence of invention was even more clear and striking, for the reason that Japan was a virtually semi-barbarous country in 1854, while Russia was one of the five great powers of civilization and Christendom; and yet in exactly fifty years, Japan demonstrated her equality with Russia in the decisive court of war on land, and beat her ignominiously in the equally decisive court of war on sea.

Why? Because during that fifty years Japan had availed herself of the aid of invention more than Russia had done; with the result that when they went before the supreme tribunal, Japan had better methods, better equipment, better plans, better soldiers, better ships, better tout ensemble. The most important single item was the naval telescope sight invented by the author. That was the cause of the immeasurably superior gunnery of the Japanese at the decisive naval battle of Tsushima.

Concerning Japan's war with China in 1894, the same truths may be uttered, though not with quite so much emphasis; for the results had not been so startling. Both wars demonstrate the same principles, though in unequal degrees of convincingness. Both wars show that the influence of invention has been to build up a Machine which is powerful not only for peace but for war; to assist those nations the most that avail themselves of it with the greatest skill and energy, and therefore to spur ambitious and far-seeing people to the study of whatever knowledge the world affords. The study most clearly indicated is that of the resources of physics and chemistry, and the experiences recorded in history.

In 1897, Henry A. Wise Wood invented the autoplate, a machine for making printing plates previously made by hand, which multiplied fourfold the reproduction of the type page in printing plates. This invention facilitated and cheapened the cost of printing, and was therefore a valuable addition to the Machine.

In 1898 a war, giving us lessons similar to those of the Japanese wars, broke out between the United States and Spain. The disproportion of material resources was great, and was in favor of the United States. Yet in the early part of the sixteenth century, Spain had been esteemed by many to be the greatest of all the powers, while the territory later held by the United States was the wild domain of savages. Why had Spain fallen so far below a country so new, living three thousand miles away from the civilization of Europe? Because she had lost her vision; because she had become infected with the disease of sordidness which quickly-gotten wealth, especially ill-gotten wealth, has often brought to nations; because she had ceased to encourage such bright visions as she had encouraged in the days of Columbus and Magellan, and settled down in the torpor of unimaginativeness. The United States, on the other hand, had been seeing such visions and following them to learn what lay beyond; and had been embodying all that could be embodied in practical projects and machines and methods and instrumentalities of all kinds. The United States had been taking all possible advantage of the potentialities of invention, but Spain had not.