In 1905, Elmer Sperry invented his gyroscopic compass which is unaffected by terrestrial magnetism and points to the true north. In 1907, he invented his gyroscopic stabilizer which reduces greatly the rolling of ships, aeroplanes, etc.

Meanwhile, the endeavor to accomplish photography in color had been receiving persistent attention from many scientific experimenters, but without much practical success. The achievements of Becquerel, Lippman, Joly, Lumière, Finlay and others have doubtless laid the initial stepping stones; for color-photography by their efforts has been made an accomplished fact. As yet, however, the art is still in its infancy, and has not, therefore, reached the stage of maturity that enables us to estimate what importance it will eventually assume.

In 1908 Goldschmidt invented the thermit process of welding; thermit being a mixture of aluminum with some metallic oxide such as oxide of iron. When this mixture is ignited, the oxygen leaves the iron and unites with the aluminum, causing an enormous rise of temperature, and the consequent formation of molten iron. This molten mass being poured around the ends of two pieces of iron, welds them together at once. In the following year, Hiram Maxim invented his silencer for fire arms, by means of which the noise resulting from firing a gun is greatly lessened. How valuable a contribution this will be to the Machine, it is impossible at the moment to predict with confidence.

In 1910, Henry A. Wise Wood invented his printing press that more than doubled the speed of printing, produced a thousand newspapers of the largest size per minute, and directly enhanced the solidarity of the Machine.

In 1911 Glenn Curtiss produced his epochal flying-boat, Just and Hanaman invented the tungsten electric light, and Drager his pulmotor, for reviving persons who have been asphyxiated or partially drowned, by forcing oxygen into their lungs. The pulmotor has come into use to a surprising degree, and has already been established as a part of the Machine with a recognized value. It belongs in the class of remedial agents, about which nobody questions the beneficence, and for which everyone recognizes the debt of gratitude owed by mankind to the inventors.

In 1912, the author of this book invented the torpedoplane, a simple combination of the automobile-torpedo with the aeroplane, so designed that an aeroplane can carry a torpedo to a predetermined point near an enemy's ship and then drop it, while simultaneously operating the torpedo's starting mechanism: so that the torpedo will fall into the water, and then continue under its own power toward its victim. As the torpedoplane combines the most powerful weapon with the swiftest means of transportation, many Navy officers think it an invention of the first rank of importance, that threatens to wipe all surface fighting vessels off the seas. During the World War, it played only a subordinate part, though it was used effectively by the British and the Germans. Our Navy did not use it at all, as Secretary Daniels rejected it. The British Navy has already adopted it as a major instrument of war, and constructed two especially designed fast vessels, each of which carries twenty torpedoplanes. It seems obvious that such a ship, if sufficiently fast to keep out of the range of a battleship's guns, could sink her without much trouble.

In the same year Flexner discovered his antitoxin for cerebro-spinal meningitis, and Edison invented the kinetophone, a combination of the phonograph and the kinetoscope. As yet, this has not been made to work with such complete success as to warrant its introduction into use. The probabilities seem to be that someone will eventually supply the link that is evidently necessary, and make the voice and the picture on the screen cooperate in unison as they should. Two years later, Flexner isolated the bacillus of infantile paralysis and Plotz that of typhus fever.

The World War that broke out in August, 1914, was marked with far greater utilization of new inventions than had marked any war before, and foreshadowed even greater utilization of new inventions in the next war.

The first evidence of any new appliance was a rain of heavy projectiles on the tops of the Belgian forts; the forts having been designed to resist projectiles on their sides. The projectiles, it was discovered later, came from mortars of a kind the existence of which had not been suspected. Soon after, the German submarines showed qualities of endurance and radius of action that bespoke new appliances; and then came attacks on the Allied troops with poison-gas that almost were successful. The Allies replied with new inventions, especially in wireless telegraphy and telephony, mines, "depth-bombs" and "listening devices;" the latter being employed under water to detect the movements of submarines. Many other inventions were almost on the point of practicality when the Armistice was signed, but were not quite ready; showing what had often been shown before, that inventions for use in war, like all other preparations for war, should be complete ready for use, before the war begins.

As soon as the war broke out in Europe, the present author began to urge that the United States develop naval and military aeronautics to the utmost; in order that, when we should finally enter into the war, we should have available a large force of bombing aeroplanes and torpedoplanes. When we finally entered into the war, in April, 1917, he urged continually that we develop a great aeronautical force and send it to Europe to prevent the exit of German submarines from their bases, to destroy those bases and to sink the ships of the German fleet. These suggestions were rejected by Secretary Daniels as impracticable; but subsequent developments have proved that they were thoroughly practicable; in fact, an expedition was organized in England to carry them out, when the Armistice was signed.