One of the devices that may be imagined for the purpose is the following. We know that the earth turns on itself from west to east, and travels round the sun in the same way. It follows that in the middle of the night the revolution of the earth round the sun means that Paris will be displaced, in the direction from Auteuil toward Charenton, at a speed of about thirty kilometres a second. During the day, of course, it is precisely the opposite. Paris changes its place round the sun in the direction from Charenton toward Auteuil. Well, let us suppose that at midnight a physicist at Auteuil sends a luminous signal. A physicist receiving this ray of light at Charenton, and measuring its velocity, ought to find that the latter is V + 30 kilometres. We know that, as a result of the earth’s motion, Charenton recedes before the ray of light. Consequently, since light travels in a medium, the ether, which does not share the earth’s motion, the observer at Charenton ought to find that the ray reaches him at a less speed than it would if the earth were stationary. It is much the same as if an observer were travelling on a bicycle in front of an express train. If the express travels at thirty metres a second and the cyclist at three metres a second, the speed of the train in relation to the cyclist will be 30-3 = 27 metres a second. It would be nil if the train and the cyclist were travelling at the same rate.
On the other hand, if the cyclist were going toward the train, the speed of the train in relation to him would be 30 + 3 = 33 metres a second. Similarly, when the physicist at Charenton sends out a luminous message at midnight, and the physicist of Auteuil receives it, the latter ought to find that the ray of light has a velocity of V + 30 kilometres.
All this may be put in a different way. Suppose the distance between the observer at Auteuil and the man at Charenton were exactly twelve kilometres. While the ray of light emitted at Auteuil speeds toward Charenton, that town is receding before it to a small extent. It follows that the ray will have to travel a little more than twelve kilometres before it reaches the man of science at Charenton. It will travel a little less than that distance if we imagine it proceeding in the opposite direction.
Now the American physicist Michelson, borrowing an ingenious idea from the French physicist Fizeau, succeeded, with a high degree of accuracy, in measuring distances by means of the interference-bands of light. Every variation in the distance measured betrays itself by the displacement of a certain number of these bands, and this may easily be detected by a microscope.
Let us next suppose that our two physicists work in a laboratory instead of between Charenton and Auteuil. Let us suppose that they are, by means of the interference-bands, measuring the space traversed by a ray of light produced in the laboratory, according as it travels in the same direction as the earth or in the opposite direction. That is Michelson’s famous experiment, reduced to its essential elements and simplified for the purpose of this essay. In those circumstances Michelson’s delicate apparatus ought to reveal a distinctly measurable difference according as the light travels with the earth or in the opposite direction.
But no such difference was found. Contrary to all expectation, and to the profound astonishment of physicists, it was found that light travels at precisely the same speed whether the man who receives it is receding before it with the velocity of the earth or is approaching it at the same velocity. It is an undeniable consequence of this that the ether shares the motion of the earth. We have, however, seen that other experiments, not less precise, had settled that the ether does not share the motion of the earth.
Out of this contradiction, this conflict of two irreconcilable yet indubitable facts, Einstein’s splendid synthesis, like a spark of light issuing from the clash of flint and steel, came into being.
CHAPTER II
SCIENCE IN A NO-THOROUGHFARE
Scientific truth and mathematics—The precise function of Einstein—Michelson’s experiment, the Gordian knot of science—The hesitations of Poincaré—The strange, but necessary, Fitzgerald-Lorentz hypothesis—The contraction of moving bodies—Philosophical and physical difficulties.