When Lamartine appealed to time to “suspend its flight,” he said a very charming, but perhaps meaningless, thing. If time had obeyed his passionate appeal, neither Lamartine nor Elvire would have known and rejoiced over the fact. The boatman who conducted the lovers on the Lac du Bourget would not have asked payment for a single additional hour; yet he would have dipped his oars into the pleasant waters for a far longer time.
I venture to sum up all this in a sentence which will at first sight seem a paradox: in the opinion of the Relativists it is the measuring rods which create space, the clocks which create time. All this was maintained by Poincaré and others long before the time of Einstein, and one does injustice to truth in ascribing the discovery to him. I am quite aware that one lends only to the rich, but one does an injustice to the wealthy themselves in attributing to them what does not belong to them, and what they need not in order to be rich.
There is, moreover, one point at which Galileo and Newton, for all their belief in the existence of absolute space and time, admitted a certain relativity. They recognised that it is impossible to distinguish between uniform movements of translation. They thus admitted the equivalence of all such movements, and therefore the impossibility of proving an absolute movement of translation.
That is what is called the Principle of Classic Relativity.
An unexpected fact served to bring these questions upon a new plane, and led Einstein to give a remarkable extension to the Principle of Relativity of classic mechanics. This was the issue of a famous experiment by Michelson, of which we must give a brief description.
It is well known that rays of light travel across empty space from star to star, otherwise we should be unable to see the stars. From this physicists long ago concluded that the rays travelled in a medium that is devoid of mass and inertia, is infinitely elastic, and offers no resistance to the movement of material bodies, into which it penetrates. This medium has been named ether. Light travels through it as waves spread over the surface of water at a speed of something like 186,000 miles a second: a velocity which we will express by the letter V.
The earth revolves round the sun in a veritable ocean of ether, at a speed of about 18 miles a second. In this respect the rotation of the earth on its axis need not be noticed, as it pushes the surface of the globe through the ether at a speed of less than two miles a second. Now the question had often been asked: Does the earth, in its orbital movement round the sun, take with it the ether which is in contact with it, as a sponge thrown out of a window takes with it the water which it has absorbed? Experiment—or rather, experiments, for many have been tried with the same result—has shown that the question must be answered in the negative.
This was first established by astronomical observation. There is in astronomy a well-known phenomenon discovered by Bradley which is called aberration. It consists in this: when we observe a star with a telescope, the image of the star is not precisely in the direct line of vision. The reason is that, while the luminous rays of the star which have entered the telescope are passing down the length of the tube, the instrument has been slightly displaced, as it shares the movement of the earth. On the other hand, the luminous ray in the tube does not share the earth’s motion, and this gives rise to the very slight deviation which we call aberration. This proves that the medium in which light travels, the ether which fills the instrument and surrounds the earth, does not share the earth’s motion.
Many other experiments have settled beyond question that the ether, which is the vehicle of the waves of light, is not borne along by the earth as it travels. Now, since the earth moves through the ether as a ship moves over a stationary lake (not like one floating on a moving stream), it ought to be possible to detect some evidence of this speed of the earth in relation to the ether.