Fig. 2.

It is in this manner that the circles of the sphere are projected, as represented in the following diagram, Fig. 2. Here, various circles are represented as projected on the meridian, which is supposed to be situated directly before the eye, at some distance from it. The horizon H O, being perpendicular to the meridian, is seen edgewise, and consequently is projected into a straight line. The same is the case with the prime vertical Z N, with the equator E Q, and the several small circles parallel to the equator, which represent the two tropics and the two polar circles. In fact, all circles whatsoever, which are perpendicular to the plane of projection, will be represented by straight lines. But every circle which is perpendicular to the horizon, except the prime vertical, being seen obliquely, as Z M N, will be projected into an ellipse, one half only of which is seen,—the other half being on the other side of the plane of projection. In the same manner, P R P, an hour circle, is represented by an ellipse on the plane of projection.


LETTER III.

ASTRONOMICAL INSTRUMENTS.——TELESCOPE.

"Here truths sublime, and sacred science charm, Creative arts new faculties supply, Mechanic powers give more than giant's arm, And piercing optics more than eagle's eye; Eyes that explore creation's wondrous laws, And teach us to adore the great Designing Cause."—Beattie.

If, as I trust, you have gained a clear and familiar knowledge of the circles and divisions of the sphere, and of the mode of estimating the position of a heavenly body by its azimuth and altitude, or by its right ascension and declination, or by its longitude and latitude, you will now enter with advantage upon an account of those instruments, by means of which our knowledge of astronomy has been greatly promoted and perfected.

The most ancient astronomers employed no instruments of observation, but acquired their knowledge of the heavenly bodies by long-continued and most attentive inspection with the naked eye. Instruments for measuring angles were first used in the Alexandrian school, about three hundred years before the Christian era.

Wherever we are situated on the earth, we appear to be in the centre of a vast sphere, on the concave surface of which all celestial objects are inscribed. If we take any two points on the surface of the sphere, as two stars, for example, and imagine straight lines to be drawn to them from the eye, the angle included between these lines will be measured by the arc of the sky contained between the two points. Thus, if D B H, Fig. 3, page 30, represents the concave surface of the sphere, A, B, two points on it, as two stars, and C A, C B, straight lines drawn from the spectator to those points, then the angular distance between them is measured by the arc A B, or the angle A C B. But this angle may be measured on a much smaller circle, having the same centre, as G F K, since the arc E F will have the same number of degrees as the arc A B. The simplest mode of taking an angle between two stars is by means of an arm opening at a joint like the blade of a penknife, the end of the arm moving like C E upon the graduated circle K F G. In fact, an instrument constructed on this principle, resembling a carpenter's rule with a folding joint, with a semicircle attached, constituted the first rude apparatus for measuring the angular distance between two points on the celestial sphere. Thus the sun's elevation above the horizon might be ascertained, by placing one arm of the rule on a level with the horizon, and bringing the edge of the other into a line with the sun's centre.