Fig. 3.

The common surveyor's compass affords a simple example of angular measurement. Here, the needle lies in a north and south line, while the circular rim of the compass, when the instrument is level, corresponds to the horizon. Hence the compass shows the azimuth of an object, or how many degrees it lies east or west of the meridian.

It is obvious, that the larger the graduated circle is, the more minutely its limb may be divided. If the circle is one foot in diameter, each degree will occupy one tenth of an inch. If the circle is twenty feet in diameter, a degree will occupy the space of two inches, and could be easily divided into minutes, since each minute would cover a space one thirtieth of an inch. Refined astronomical circles are now divided with very great skill and accuracy, the spaces between the divisions being, when read off, magnified by a microscope; but in former times, astronomers had no mode of measuring small angles but by employing very large circles. But the telescope and microscope enable us at present to measure celestial arcs much more accurately than was done by the older astronomers. In the best instruments, the measurements extend to a single second of space, or one thirty-six hundredth part of a degree,—a space, on a circle twelve feet in diameter, no greater than one fifty-seven hundredth part of an inch. To divide, or graduate, astronomical instruments, to such a degree of nicety, requires the highest efforts of mechanical skill. Indeed, the whole art of instrument-making is regarded as the most difficult and refined of all the mechanical arts; and a few eminent artists, who have produced instruments of peculiar power and accuracy, take rank with astronomers of the highest celebrity.

I will endeavor to make you acquainted with several of the principal instruments employed in astronomical observations, but especially with the telescope, which is the most important and interesting of them all. I think I shall consult your wishes, as well as your improvement, by giving you a clear insight into the principles of this prince of instruments, and by reciting a few particulars, at least, respecting its invention and subsequent history.

The Telescope, as its name implies, is an instrument employed for viewing distant objects.[2] It aids the eye in two ways; first, by enlarging the visual angle under which objects are seen, and, secondly, by collecting and conveying to the eye a much larger amount of the light that emanates from the object, than would enter the naked pupil. A complete knowledge of the telescope cannot be acquired, without an acquaintance with the science of optics; but one unacquainted with that science may obtain some idea of the leading principles of this noble instrument. Its main principle is as follows: By means of the telescope, we first form an image of a distant object,—as the moon, for example,—and then magnify that image by a microscope.

Fig. 4.

Let us first see how the image is formed. This may be done either by a convex lens, or by a concave mirror. A convex lens is a flat piece of glass, having its two faces convex, or spherical, as is seen in a common sun-glass, or a pair of spectacles. Every one who has seen a sun-glass, knows, that, when held towards the sun, it collects the solar rays into a small bright circle in the focus. This is in fact a small image of the sun. In the same manner, the image of any distant object, as a star, may be formed, as is represented in the following diagram. Let A B C D, Fig. 4, represent the tube of the telescope. At the front end, or at the end which is directed towards the object, (which we will suppose to be the moon,) is inserted a convex lens, L, which receives the rays of light from the moon, and collects them into the focus at a, forming an image of the moon. This image is viewed by a magnifier attached to the end B C. The lens, L, is called the object-glass, and the microscope in B C, the eyeglass. We apply a microscope to this image just as we would to any object; and, by greatly enlarging its dimensions, we may render its various parts far more distinct than they would otherwise be; while, at the same time, the lens collects and conveys to the eye a much greater quantity of light than would proceed directly from the body under examination. A very few rays of light only, from a distant object, as a star, can enter the eye directly; but a lens one foot in diameter will collect a beam of light of the same dimensions, and convey it to the eye. By these means, many obscure celestial objects become distinctly visible, which would otherwise be either too minute, or not sufficiently luminous, to be seen by us.

But the image may also be formed by means of a concave mirror, which, as well as the concave lens, has the property of collecting the rays of light which proceed from any luminous body, and of forming an image of that body. The image formed by a concave mirror is magnified by a microscope, in the same manner as when formed by the concave lens. When the lens is used to form an image, the instrument is called a refracting telescope; when a concave mirror is used, it is called a reflecting telescope.