The observatory at Greenwich was not built until a hundred years after that of Tycho Brahe, namely, in 1676. The great interests of the British nation, which are involved in navigation, constituted the ruling motive with the government to lend their aid in erecting and maintaining this observatory.

The site of the observatory at Greenwich is on a commanding eminence facing the River Thames, five miles east of the central parts of London. Being part of a royal park, the neighboring grounds are in no danger of being occupied by buildings, so as to obstruct the view. It is also in full view of the shipping on the Thames; and, according to a standing regulation of the observatory, at the instant of one o'clock, every day, a huge ball is dropped from over the house, as a signal to the commanders of vessels for regulating their chronometers.

The buildings comprise a series of rooms, of sufficient number and extent to accommodate the different instruments, the inmates of the establishment, and the library; and on the top is a celebrated camera obscura, exhibiting a most distinct and perfect picture of the grand and unrivalled scenery which this eminence commands.

This establishment, by the accuracy and extent of its observations, has contributed more than all other institutions to perfect the science of astronomy.

To preside over and direct this great institution, a man of the highest eminence in the science is appointed by the government, with the title of Astronomer Royal. He is paid an ample salary, with the understanding that he is to devote himself exclusively to the business of the observatory. The astronomers royal of the Greenwich observatory, from the time of its first establishment, in 1676, to the present time, have constituted a series of the proudest names of which British science can boast. A more detailed sketch of their interesting history will be given towards the close of these Letters.

Six assistants, besides inferior laborers, are constantly in attendance; and the business of making and recording observations is conducted with the utmost system and order.

The great objects to be attained in the construction of an observatory are, a commanding and unobstructed view of the heavens; freedom from causes that affect the transparency and uniform state of the atmosphere, such as fires, smoke, or marshy grounds; mechanical facilities for the management of instruments, and, especially, every precaution that is necessary to secure perfect steadiness. This last consideration is one of the greatest importance, particularly in the use of very large magnifiers; for we must recollect, that any motion in the instrument is magnified by the full power of the glass, and gives a proportional unsteadiness to the object. A situation is therefore selected as remote as possible from public roads, (for even the passing of carriages would give a tremulous motion to the ground, which would be sensible in large instruments,) and structures of solid masonry are commenced deep enough in the ground to be unaffected by frost, and built up to the height required, without any connexion with the other parts of the building. Many observatories are furnished with a movable dome for a roof, capable of revolving on rollers, so that instruments penetrating through the roof may be easily brought to bear upon any point at or near the zenith.

You will not perhaps desire me to go into a minute description of all the various instruments that are used in a well-constructed observatory. Nor is this necessary, since a very large proportion of all astronomical observations are taken on the meridian, by means of the transit instrument and clock. When a body, in its diurnal revolution, comes to the meridian, it is at its highest point above the horizon, and is then least affected by refraction and parallax. This, then, is the most favorable position for taking observations upon it. Moreover, it is peculiarly easy to take observations on a body when in this situation. Hence the transit instrument and clock are the most important members of an astronomical observatory. You will, therefore, expect me to give you some account of these instruments.

Fig. 7.