The transit instrument is a telescope which is fixed permanently in the meridian, and moves only in that plane. The accompanying diagram, Fig. 7, represents a side view of a portable transit instrument, exhibiting the telescope supported on a firm horizontal axis, on which it turns in the plane of the meridian, from the south point of the horizon through the zenith to the north point. It can therefore be so directed as to observe the passage of a star across the meridian at any altitude. The accompanying graduated circle enables the observer to set the instrument at any required altitude, corresponding to the known altitude at which the body to be observed crosses the meridian. Or it may be used to measure the altitude of a body, or its zenith distance, at the time of its meridian passage. Near the circle may be seen a spirit-level, which serves to show when the axis is exactly on a level with the horizon. The framework is made of solid metal, (usually brass,) every thing being arranged with reference to keeping the instrument perfectly steady. It stands on screws, which not only afford a steady support, but are useful for adjusting the instrument to a perfect level. The transit instrument is sometimes fixed immovably to a solid foundation, as a pillar of stone, which is built up from a depth in the ground below the reach of frost. When enclosed in a building, as in an observatory, the stone pillar is carried up separate from the walls and floors of the building, so as to be entirely free from the agitations to which they are liable.

The use of the transit instrument is to show the precise instant when a heavenly body is on the meridian, or to measure the time it occupies in crossing the meridian. The astronomical clock is the constant companion of the transit instrument. This clock is so regulated as to keep exact pace with the stars, and of course with the revolution of the earth on its axis; that is, it is regulated to sidereal time. It measures the progress of a star, indicating an hour for every fifteen degrees, and twenty-four hours for the whole period of the revolution of the star. Sidereal time commences when the vernal equinox is on the meridian, just as solar time commences when the sun is on the meridian. Hence the hour by the sidereal clock has no correspondence with the hour of the day, but simply indicates how long it is since the equinoctial point crossed the meridian. For example, the clock of an observatory points to three hours and twenty minutes; this may be in the morning, at noon, or any other time of the day,—for it merely shows that it is three hours and twenty minutes since the equinox was on the meridian. Hence, when a star is on the meridian, the clock itself shows its right ascension, which you will recollect is the angular distance measured on the equinoctial, from the point of intersection of the ecliptic and equinoctial, called the vernal equinox, reckoning fifteen degrees for every hour, and a proportional number of degrees and minutes for a less period. I have before remarked, that a very large portion of all astronomical observations are taken when the bodies are on the meridian, by means of the transit instrument and clock.

Having now described these instruments, I will next explain the manner of using them for different observations. Any thing becomes a measure of time, which divides duration equally. The equinoctial, therefore, is peculiarly adapted to this purpose, since, in the daily revolution of the heavens, equal portions of the equinoctial pass under the meridian in equal times. The only difficulty is, to ascertain the amount of these portions for given intervals. Now, the clock shows us exactly this amount; for, when regulated to sidereal time, (as it easily may be,) the hour-hand keeps exact pace with the equator, revolving once on the dial-plate of the clock while the equator turns once by the revolution of the earth. The same is true, also, of all the small circles of diurnal revolution; they all turn exactly at the same rate as the equinoctial, and a star situated any where between the equator and the pole will move in its diurnal circle along with the clock, in the same manner as though it were in the equinoctial. Hence, if we note the interval of time between the passage of any two stars, as shown by the clock, we have a measure of the number of degrees by which they are distant from each other in right ascension. Hence we see how easy it is to take arcs of right ascension: the transit instrument shows us when a body is on the meridian; the clock indicates how long it is since the vernal equinox passed it, which is the right ascension itself; or it tells us the difference of right ascension between any two bodies, simply by indicating the difference in time between their periods of passing the meridian. Again, it is easy to take the declination of a body when on the meridian. By declination, you will recollect, is meant the distance of a heavenly body from the equinoctial; the same, indeed, as latitude on the earth. When a star is passing the meridian, if, on the instant of crossing the meridian wire of the telescope, we take its distance from the north pole, (which may readily be done, because the position of the pole is always known, being equal to the latitude of the place,) and subtract this distance from ninety degrees, the remainder will be the distance from the equator, which is the declination. You will ask, why we take this indirect method of finding the declination? Why we do not rather take the distance of the star from the equinoctial, at once? I answer, that it is easy to point an instrument to the north pole, and to ascertain its exact position, and of course to measure any distance from it on the meridian, while, as there is nothing to mark the exact situation of the equinoctial, it is not so easy to take direct measurements from it. When we have thus determined the situation of a heavenly body, with respect to two great circles at right angles with each other, as in the present case, the distance of a body from the equator and from the equinoctial colure, or that meridian which passes though the vernal equinox, we know its relative position in the heavens; and when we have thus determined the relative positions of all the stars, we may lay them down on a map or a globe, exactly as we do places on the earth, by means of their latitude and longitude.

The foregoing is only a specimen of the various uses of the transit instrument, in finding the relative places of the heavenly bodies. Another use of this excellent instrument is, to regulate our clocks and watches. By an observation with the transit instrument, we find when the sun's centre is on the meridian. This is the exact time of apparent noon. But watches and clocks usually keep mean time, and therefore, in order to set our timepiece by the transit instrument, we must apply to the apparent time of noon the equation of time, as will be explained in my next Letter.

A noon-mark may easily be made by the aid of the transit instrument. A window sill is frequently selected as a suitable place for the mark, advantage being taken of the shadow projected upon it by the perpendicular casing of the window. Let an assistant stand, with a rule laid on the line of shadow, and with a knife ready to make the mark, the instant when the observer at the transit instrument announces that the centre of the sun is on the meridian. By a concerted signal, as the stroke of a bell, the inhabitants of a town may all fix a noon-mark from the same observation. If the signal be given on one of the days when apparent time and mean time become equal to each other, as on the twenty-fourth of December, no equation of time is required.

As a noon-mark is convenient for regulating timepieces, I will point out a method of making one, which may be practised without the aid of the telescope. Upon a smooth, level plane, freely exposed to the sun, with a pair of compasses describe a circle. In the centre, where the leg of the compasses stood, erect a perpendicular wire of such a length, that the termination of its shadow shall fall upon the circumference of the circle at some hour before noon, as about ten o'clock. Make a small dot at the point where the end of the shadow falls upon the circle, and do the same where it falls upon it again in the afternoon. Take a point half-way between these two points, and from it draw a line to the centre, and it will be a true meridian line. The direction of this line would be the same, whether it were made in the Summer or in the Winter; but it is expedient to draw it about the fifteenth of June, for then the shadow alters its length most rapidly, and the moment of its crossing the wire will be more definite, than in the Winter. At this time of year, also, the sun and clock agree, or are together, as will be more fully explained in my next Letter; whereas, at other times of the year, the time of noon, as indicated by a common clock, would not agree with that indicated by the sun. If the upper end of the wire is flattened, and a small hole is made in it, through which the sun may shine, the instant when this bright spot falls upon the circle will be better defined than the termination of the shadow.

Another important instrument of the observatory is the mural circle. It is a graduated circle, usually of very large size, fixed permanently in the plane of the meridian, and attached firmly to a perpendicular wall; and on its centre is a telescope, which revolves along with it, and is easily brought to bear on any object in any point in the meridian. It is made of large size, sometimes twenty feet in diameter, in order that very small angles may be measured on its limb; for it is obvious that a small angle, as one second, will be a larger space on the limb of an instrument, in proportion as the instrument itself is larger. The vertical circle usually connected with the transit instrument, as in Fig. 7, may indeed be employed for the same purposes as the mural circle, namely, to measure arcs of the meridian, as meridian altitudes, zenith distances, north polar distances, and declinations; but as that circle must necessarily be small, and therefore incapable of measuring very minute angles, the mural circle is particularly useful in measuring these important arcs. It is very difficult to keep so large an instrument perfectly steady; and therefore it is attached to a massive wall of solid masonry, and is hence called a mural circle, from a Latin word, (murus,) which signifies a wall.

The diagram, Fig. 8, page 56, represents a mural circle fixed to its wall, and ready for observations. It will be seen, that every expedient is employed to give the instrument firmness of parts and steadiness of position. The circle is of solid metal, usually of brass, and it is strengthened by numerous radii, which keep it from warping or bending; and these are made in the form of hollow cones, because that is the figure which unites in the highest degree lightness and strength. On the rim of the instrument, at A, you may observe a microscope. This is attached to a micrometer,—a delicate piece of apparatus, used for reading the minute subdivisions of angles; for, after dividing the limb of the instrument as minutely as possible, it will then be necessary to magnify those divisions with the microscope, and subdivide each of these parts with the micrometer. Thus, if we have a mural circle twenty feet in diameter, and of course nearly sixty-three feet in circumference, since there are twenty-one thousand and six hundred minutes in the whole circle, we shall find, by calculation, that one minute would occupy, on the limb of such an instrument, only about one thirtieth of an inch, and a second, only one eighteen hundredth of an inch. We could not, therefore, hope to carry the actual divisions to a greater degree of minuteness than minutes; but each of these spaces may again be subdivided into seconds by the micrometer.

Fig. 8.