From a very early period the effects of heat upon liquids, and more especially the production of steam or vapour, was regarded as a probable source of mechanical power, and numerous speculators directed their attention to it, and exerted their inventive faculties to derive from it an effective mover. It was not, however, until the commencement of the eighteenth century that any invention was produced which was practically applied, even unsuccessfully. All the attempts previous to that time were either suggestions which were limited to paper or experiments confined to models; or, if they exceeded this, they never outlived a single trial on a larger scale. Nevertheless many of these suggestions and experiments being recorded and accessible to future inquirers doubtless offered useful hints and some practical aid to those more successful investigators who subsequently contrived engines in such forms as to be practically available on a large scale for mechanical purposes. It is right and just, therefore—mere suggestions and abortive experiments though they may have been—to record them, that each inventor and discoverer may receive the just credit due to his share in this splendid mechanical invention. We shall then in the present chapter briefly enumerate, in chronological order, the successive steps so far as they have come to our knowledge.

HERO OF ALEXANDRIA, 120 B. C.

Fig.1.

(23.) In a work entitled Spiritalia seu Pneumatica, one of the numerous works of this philosopher which has remained to us, is contained a description of a machine moved by vapour of water. A hollow sphere, of which A B represents a section, is supported on two pivots at A and B, which are the extremities of tubes A C D and B E F, which pass into a boiler where steam is generated. This steam flows through small apertures at the extremities A and B, and fills the hollow sphere. One or more horizontal arms K G, I H, project from this sphere, and are likewise filled with steam, but are closed at their extremities. Conceive a small hole made near the extremity G, but at one side of one of the tubes; the steam confined in the tube and globe would immediately rush from the hole with a force proportionate to its pressure within the globe. On the common principle of mechanics a re-action would be produced, and the tube would recoil in the same manner as a gun when discharged. The tubular arm K G being thus pressed in a direction opposed to that in which the steam issues, the sphere would revolve accordingly, and would continue to revolve so long as the steam would continue to flow from the aperture. The force of recoil would be increased by making a similar aperture in two or more arms, care being taken that all the apertures should be placed so as to cause the sphere to revolve in the same direction.

This motion being once produced might be transmitted by ordinary mechanical contrivance to any machinery which its power might be adequate to move.

This method of using steam is not adopted in any part or any form of the modern steam engine.

BLASCO DE GARAY, A. D. 1543.

(24.) In the year 1826 there appeared in Zach's Correspondence a communication from Thomas Gonsalez, Director of the Royal Archives of Simancas, giving an account of an experiment reported to have been made in the year 1543 by order of Charles V. in the port of Barcelona. Blasco de Garay, a sea captain, had contrived a machine by which he proposed to propel vessels without oars or sails. Garay concealed altogether the nature of the machine which he used: all that was seen during the experiment was that it consisted of a great boiler for water, and that wheels were kept in revolution at each side of the vessel. The experiment was made upon a vessel called the Trinity, of 200 tons burden, and was witnessed by several official personages, whose presence on the occasion was commanded by the king. One of the witnesses reported that it was capable of moving the vessel at the rate of two leagues in three hours, that the machine was too complicated and expensive, and was exposed to the danger of explosion. The other witnesses, however, reported more favourably. The result of the experiment was thought to be favourable: the inventor was promoted, and received a pecuniary reward, besides having all his expenses defrayed.