The cylinder is represented at C ([fig. 12].)—in which the piston P moves steam-tight. It is closed at the top, and the piston-rod being very accurately turned, runs in a steam-tight collar B furnished with a stuffing-box, and constantly supplied with melted tallow or wax. Through a funnel in the top of the cylinder, melted grease flows upon the piston so as to maintain it steam-tight. Two boxes A A, containing the valves for admitting and withdrawing the steam, connected by a tube of communication T, are attached to the cylinder; the action of these valves will be presently described. Below the cylinder, placed in a cistern of cold water, is a close cylindrical vessel D, called the condenser, communicating with the cylinder by a tube T´, leading to the lower valve-box A. In the side of this condenser is inserted a tube, the inner end of which is pierced with holes like the rose of a watering-pot; and a cock E in the cold cistern is placed on the outside, through which, when open, the water passing, rises in a jet on the inside.
The tube S, which conducts steam from the boiler, enters the top of the upper valve-box at F. Immediately under it is placed a valve G, which is opened and closed by a lever or rod G´. This valve, when open, admits steam to the top of the piston, and also to the tube T, which communicates between the two valve-boxes, and when closed suspends the admission of steam. There are two valves in the lower box, one H in the top worked by the lever H´, and one I in the bottom worked by the lever I´. The valve H, when open, admits steam to pass from the cylinder above the piston, by the tube T, to the cylinder below the piston, the valve I being supposed in this case to be closed. This valve I, when open, (the valve H being closed,) admits steam to pass from below the cylinder through T´ to the condenser. This steam, entering the condenser, meets the jet, admitted to play by the valve E, and is condensed.
The valve G is called the upper steam valve; H, lower steam valve; I, the exhausting-valve; and E, the condensing valve. Let us now consider how these valves must be worked in order to produce the alternate ascent and descent of the piston.
It is in the first place necessary that all the air which fills the cylinder, tubes, and condenser should be expelled. To accomplish this it is only necessary to open at once the valves G, H, and I. The steam then rushing from F through the valve G will pass into the upper part of the cylinder, and through the tube T and the valve H into the lower part, and also through the valve I into the condenser. After the steam ceases to be condensed by the cold of the apparatus, it will rush out mixed with air through the valve M, which opens outward; and this will continue until all the air has been expelled, and the apparatus filled with pure steam. Then suppose all the valves again closed. The cylinder both above and below the piston is filled with steam; and the steam which filled the condenser being cooled by the cold surface, a vacuum has been produced in that vessel.
The apparatus being in this state, let the upper steam valve G, the exhausting-valve I, and the condensing valve E be opened. Steam will thus be admitted through G to press on the top of the piston; and this steam will be prevented from circulating to the lower part of the cylinder by the lower steam-valve H being closed. Also the steam which filled the cylinder below the piston rushes through the open exhausting-valve I to the condenser, where it meets the jet allowed to play by the open condensing valve E. It is thus instantly condensed, and a vacuum is left in the cylinder below the piston. Into this vacuum the piston is pressed without resistance by the steam which is admitted through G. When the piston has thus been forced to the bottom of the cylinder, let the three valves G, I, and E, which were before opened, be closed, and let the lower steam-valve H be opened. The effects of this change are easily perceived. By closing the upper steam-valve G, the further admission of steam to the apparatus is stopped. By closing the exhausting-valve I, all transmission of steam from the cylinder to the condenser is stopped. Thus the steam which is in the cylinder, valve-boxes, and tubes is shut up in them, and no more admitted, nor any allowed to escape. By closing the condensing valve E, the play of the jet in the condenser is suspended.
Previously to opening the valve H, the steam contained in the apparatus was confined to the part of the cylinder above the piston and the tube T and the valve-box A. But on opening this valve, the steam is allowed to circulate above and below the piston; and in fact through every part included between the upper steam valve G, and the exhausting-valve I. The same steam circulating on both sides, the piston is thus equally pressed upward and downward.
In this case there is no force tending to retain the piston at the bottom of the cylinder except its own weight. Its ascent is produced in the same manner as the ascent of the piston in the atmospheric engine. The piston-rod is connected by chains G to the arch-head of the beam, and the weight of the pump-rod R, or any other counterpoise acting on the chains suspended from the other arch-head, draws the piston to the top of the cylinder.
When the piston has arrived at the top of the cylinder, suppose the three valves G, I, and E to be again opened, and H closed. Steam passes from the steam-pipe F through the upper steam-valve G to the top of the piston, and at the same time the steam which filled the cylinder below the piston is drawn off through the open exhausting-valve I into the condenser, where it is condensed by the jet allowed to play by the open condensing valve E. The pressure of the steam above the piston then forces it without resistance into the vacuum below it, and so the process is continued.
It should be remembered, that of the four valves necessary to work the piston, three are to be opened the moment the piston reaches the top of the cylinder, and the fourth is to be closed; and on the piston arriving at the bottom of the cylinder, these three are to be closed and the fourth opened. The three valves which are thus opened and closed together are the upper steam-valve, the exhausting-valve, and the condensing valve. The lower steam-valve is to be opened at the same instant that these are closed, and vice versâ. The manner of working these valves we shall describe hereafter.
The process which has just been described, if continued for any considerable number of reciprocations of the piston, would be attended with two very obvious effects which would obstruct and finally destroy the action of the machine. First, the condensing water and condensed steam would collect in the condenser D, and fill it; and secondly, the water in the cistern in which the condenser is placed would gradually become heated, until at last it would not be cold enough to condense the steam when introduced in the jet. Besides this, it will be recollected that water boils in a vacuum at a very low temperature (17); and, therefore, the hot water collected in the bottom of the condenser would produce steam which, rising into the cylinder through the exhausting-valve, would resist the descent of the piston, and counteract the effects of the steam above it. A further disadvantage arises from the air or other permanently elastic fluid which enters in combination with the water, both in the boiler and condensing jet, and which is disengaged by its own elasticity.