The incredulity, opposition, and even ridicule, with which the project of Mr. Gurney was met, are very remarkable. His views were from the first opposed by engineers, without one exception. The contracted habit of mind, sometimes produced by an education chiefly, if not exclusively, directed to a merely practical object, subsequently confirmed by exclusively practical pursuits, may, perhaps, in some degree, account for this. But, I confess, it has not been without surprise that I have observed, during the last ten years, the utter incredulity which has prevailed among men of general science on this subject,—an incredulity which the most unequivocal practical proof has scarcely yet dispelled. "Among scientific men," says Mr. Gurney, "my opinion had not a single supporter, with the exception of the late Dr. Wollaston."
The mistake which so long prevailed in the application of locomotives on railroads, and which, as we have shown, materially retarded the progress of that invention, was shared by Mr. Gurney. Without reducing the question to the test of experiment, he took for granted, in his first attempts, that the adhesion of the wheels with the road was too slight to propel the carriage. He was assured, he says, by eminent engineers, that this was a point settled by actual experiment. It is strange, however, that a person of his quickness and sagacity did not inquire after the particulars of these "actual experiments." So, however, it was; and, taking for granted the inability of the wheels to propel, he wasted much labour and skill in the contrivance of levers and propellers, which acted on the ground in a manner somewhat resembling the feet of horses, to drive the carriage forward. After various fruitless attempts of this kind, the experience acquired in the trials to which they gave rise at last forced the truth upon his notice, and he found that the adhesion of the wheels was not only sufficient to propel the carriage heavily laden on level roads, but was capable of causing it to ascend all the hills which occur on ordinary turnpike roads. In this manner it ascended all the hills between London and Barnet, London and Stanmore, Stanmore Hill, Brockley Hill, and mounted Old Highgate Hill, the last at one point rising one foot in nine.
It would be foreign to my present object to detail minutely all the steps by which Mr. Gurney gradually improved his contrivance. This, like other inventions, has advanced by a series of partial failures; but it has at length attained that state, in which, by practice alone, on a more extensive scale, a further degree of perfection can be obtained.
(106.) The boiler of this engine is so constructed that there is no part of it, not even excepting the grate-bars, in which metal exposed to the action of the fire is out of contact with water. If it be considered how rapidly the action of an intense furnace destroys metal when water is not present to prevent the heat from accumulating, the advantage of this circumstance will be appreciated. I have seen the bars of a new grate, never before used, melted in a single trip between Liverpool and Manchester; and the inventor of another form of locomotive engine has admitted to me that his grate-bars, though of a considerable thickness, would not last more than a week. In the boiler of Mr. Gurney, the grate-bars themselves are tubes filled with water, and form, in fact, a part of the boiler itself. This boiler consists of three strong metal cylinders placed in a horizontal position one above the other. A section, made by a perpendicular or vertical plane, is represented in [fig. 62]. The ends of the three cylinders, just mentioned, are represented at D, H, and I. In the side of the lowest cylinder D are inserted a row of tubes, a ground plan of which is represented in [fig. 63]. These tubes, proceeding from the side of the lowest cylinder D, are inclined slightly upwards, for a reason which I shall presently explain. From the nature of the section, only one of these tubes is visible in [fig. 62]. at C. The other extremities of these tubes at A are connected with the same number of upright tubes, one of which is expressed at E. The upper extremities G of these upright tubes are connected with another set of tubes K, equal in number, proceeding from G, inclining slightly upwards, and terminating in the second cylinder H.
Fig. 62.
Fig. 63.