(107.) In the more recent boilers constructed by Mr. Gurney, he has maintained the draught through the furnace, by the method of projecting the waste steam into the chimneys; a method so perfectly effectual, that it is unlikely to be superseded by any other. The objection which has been urged against it in locomotive engines, working on turnpike roads, is, that the noise which it produces has a tendency to frighten horses.

In the engines on the Liverpool road, the steam is allowed to pass directly from the eduction pipe of the cylinder to the chimney, and it there escapes in puffs corresponding with the alternate motion of the pistons, and produces a noise, which, although attended with no inconvenience on the railroad, would certainly be objectionable on turnpike roads. In the engine used in Mr. Gurney's steam-carriage, the steam which passes from the cylinders is conducted to a receptacle, which he calls a blowing box. This box serves the same purpose as the upper chamber of a smith's bellows. It receives the steam from the cylinders in alternate puffs, but lets it escape into the chimney in a continued stream by a number of small jets. Regular draught is by this means produced, and no noise is perceived. Another exit for the steam is also provided, by which the conductor is enabled to increase or diminish, or to suspend altogether, the draught in the chimney, so as to adapt the intensity of the fire to the exigencies of the road. This is a great convenience in practice; because, on some roads, a draught is scarcely required, while on others a powerful blast is indispensable.

Connected with this blowing box, is another ingenious apparatus of considerable practical importance. The pipe through which the water which feeds the boiler is conducted to it from the tank is carried through this blowing box, within which it is coiled in a spiral form, so that an extensive thread of the feeding water is exposed to the heat of the waste steam which has escaped from the cylinders, and which is enclosed in this blowing box. In passing through this pipe the feeding water is raised from the ordinary temperature of about 60° to the temperature of 212°. The fuel necessary to accomplish this is, therefore, saved, and the amount of this is calculated at 1/6th of all that is necessary to evaporate the water. Thus, 1/6th of the expense of fuel is saved. But, what is much more important in a locomotive engine, a portion of the weight of the engine is saved without any sacrifice of its power. There is still another great advantage attending this process. The feeding water in the worm just mentioned, while it takes up the heat from the surrounding steam in the blowing box, condenses 1/6th of the waste steam, which is thence conducted to the tank, from which the feeding water is pumped, saving in this manner 1/6th in weight and room of the water necessary to be carried in the carriage for feeding the boiler.[33]

So far as the removal of all inconvenience arising from noise, this contrivance has been proved by experience to be perfectly effectual.[34]

In all boilers, the process of violent ebullition causes a state of agitation in the water, and a number of counter currents, by which, as the steam is disengaged from the surface of the water, it takes with it a considerable quantity of water in mechanical mixture. If this be carried through the cylinders, since it possesses none of the qualities of steam, and adds nothing to the power of the vapour with which it is combined, it causes an extensive waste of heat and water, and produces other injurious effects. In every boiler therefore, some means should be provided for the separation of the water thus suspended in the steam, before the steam is conducted to the cylinder. In ordinary plate boilers, the large space which remains above the surface of the water serves this purpose. The steam being there subject to no agitation or disturbance, the water mechanically suspended in it descends by its own gravity, and leaves pure steam in the upper part. In the small tubular boilers, this has been a matter, however, of greater difficulty. The contracted spaces in which the ebullition takes place, causes the water to be mixed with the steam in a greater quantity than could happen in common plate boilers: and the want of the same steam-room renders the separation of the water from the steam a matter of some difficulty. These inconveniences have been overcome by a succession of contrivances of great ingenuity. I have already described the rapid and regular circulation effected by the arrangement of the tubes. By this a regularity in the currents is established, which alone has a tendency to diminish the mixture of water with the steam. But in addition to this, a most effectual method of separation is provided in the vessel I, which is a strong iron cylinder of some magnitude, placed out of the immediate influence of the fire. A partial separation of the steam from the water takes place in the cylinder H; and the steam with the water mechanically suspended in it, technically called moist steam, rises into the separator I. Here, being free from all agitation and currents, and being, in fact, quiescent, the particles of water fall to the bottom, while the pure steam remains at the top. This separator, therefore, serves all the purposes of the steam-room above the surface of the water in the large plate boilers. The dry steam is thus collected and ready for the supply of the engine through the tube N, while the water, which is disengaged from it, is collected at the bottom of the separator, and is conducted through the tube T to the lowest vessel D, to be again circulated through the boiler.

The pistons of the engine work on the axles of the hind wheels of the carriage which bears the engine, by cranks, as in the locomotives on the Manchester railway, so that the axle is kept in a constant state of rotation while the engine is at work. The wheels placed on this axle are not permanently fixed or keyed upon it, as in the Manchester locomotives; but they are capable of turning upon it in the same manner as ordinary carriage wheels. Immediately within these wheels there are fixed upon the axles two projecting spokes or levers, which revolve with the axle, and which take the position of two opposite spokes of the wheel. These may be occasionally attached to the wheel or detached from it; so that they are capable of compelling the wheels to turn with the axle, or leaving the axle free to turn independent of the wheel, or the wheel independent of the axle, at the pleasure of the conductor. It is by these levers that the engine is made to propel either or both of the wheels. If both pairs of spokes are thrown into connexion with the wheels, the crank shaft or axle will cause both wheels to turn with it, and in that case the operation of the carriage is precisely the same as those of the locomotives already described upon the Liverpool and Manchester line; but this is rarely found to be necessary, since the adhesion of one wheel with the road is generally sufficient to propel the carriage, and consequently only one pair of these fixed levers are generally used, and the carriage propelled by only one of the two hind wheels. The fore wheels of the carriage turn upon a pivot similar to those of a four-wheeled coach. The position of these wheels is changed at pleasure by a simple pinion and circular rack, which is moved by the conductor, and in this manner the carriage is guided with precision and facility.

The force of traction necessary to propel a carriage upon common roads must vary with the variable quality of the road, and consequently the propelling power, or the pressure upon the pistons of the engine, must be susceptible of a corresponding variation; but a still greater variation becomes necessary from the undulations and hills which are upon all ordinary roads. This necessary change in the intensity of the impelling power is obtained by restraining the steam in the boiler by the throttle valve, as already described in the locomotive engines on the railroad. This principle, however, is carried much further in the present case. The steam in the boiler may be at a pressure of from 100 to 200 lbs. on the square inch; while the steam on the working piston may not exceed 30 or 40 lbs. on the inch. Thus an immense increase of power is always at the command of the conductor; so that when a hill is encountered, or a rough piece of road, he is enabled to lay on power sufficient to meet the exigency of the occasion.

The two difficulties which have been always apprehended in the practical working of steam carriages upon common roads are, first, the command of sufficient power for hills and rough pieces of road; and, secondly, the apprehended insufficiency of the adhesion of the wheels with the road to propel the carriage. The former of these difficulties has been met by allowing steam of a very great pressure to be constantly maintained in the boiler with perfect safety. As to the second, all experiments tend to show that there is no ground for the supposition that the adhesion of the wheels is in any case insufficient for the purposes of propulsion. Mr. Gurney states, that he has succeeded in driving carriages thus propelled up considerable hills on the turnpike roads about London. He made a journey to Barnet with only one wheel attached to the axle, which was found sufficient to propel the carriage up all the hills upon that road. The same carriage, with only one propelling wheel, also went to Bath, and surmounted all the hills between Cranford Bridge and Bath, going and returning.

A double stroke of the piston produces one revolution of the propelling wheels, and causes the carriage to move through a space equal to the circumference of those wheels. It will therefore be obvious, that the greater the diameter of the wheels, the better adapted the carriage is for speed; and, on the other hand, wheels of smaller diameter are better adapted for power. In fact, the propelling power of an engine on the wheels will be in the inverse proportion to their diameter. In carriages designed to carry great weights at a moderate speed, smaller wheels will be used; while in those intended for the transport of passengers at considerable velocities, wheels of at least 5 feet in diameter are most advantageous.

Among the numerous popular prejudices to which this new invention has given rise, one of the most mischievous in its effects, and most glaring in its falsehood, is the notion that carriages thus propelled are more injurious to roads than carriages drawn by horses. This error has been most clearly and successfully exposed in the evidence taken before the committee of the House of Commons upon steam carriages. It is there fully demonstrated, not only that carriages thus propelled did not wear a turnpike road more rapidly than those drawn by horses, but that, on the other hand, the wear by the feet of horses is far more rapid and destructive than any which could be produced by the wheels of carriages. Steam carriages admit of having the tires of the wheels broad, so as to act upon the road more in the manner of rollers, and thereby to give consistency and firmness to the material of which the road is composed. The driving wheels, being fully proved not to slip upon the road, do not produce any effects more injurious than the ordinary rolling wheels; consequently the wear occasioned by a steam carriage upon a road is not more than that produced by a carriage drawn by horses of an equivalent weight and the same or equal tires; but the wear produced by the pounding and digging of horses' feet in draught is many times greater than that produced by the wear of any carriage. Those who still have doubts upon this subject, if there be any such persons, will be fully satisfied by referring to the evidence which accompanies the report of the committee of the House of Commons, printed in October, 1831. In that report they will not only find demonstrative evidence that the introduction of steam carriages will materially contribute to the saving in the wear of turnpike roads, but also that the practicability of working such carriages with a great saving to the public—with great increase of speed and other conveniences to the traveller—is fully established.