Its materialism is of the most intransigent character. The form and activities of living things are held to be merely the mechanical result of the physical and chemical composition of their bodies. The simplest living things, the Monera, are nothing more than homogeneous masses of protein substance. "They live, but without organs of life; all the phenomena of their life, nutrition and reproduction, movement and irritability, appear here as merely the immediate outcome of formless organic matter, itself an albumen compound" (p. 63, 1906).
Teleology, the Achilles' heel of Kant's (otherwise sound!) philosophy, is to be regarded as a totally refuted and antiquated doctrine, definitely put out of court by Darwinism.
Haeckel works out his materialistic philosophy of living things very much after the fashion of Schwann. There is the same talk of cells as organic crystals, of crystal trees, of the analogy between assimilation by the cell and the growth of crystals in a mother liquid. Heredity and adaptation are shown equally as well by crystals as by organisms; for heredity, or the internal Bildungstrieb (!), is the mechanical effect of the material structure of the crystal or the germ, and adaptation, or the external Bildungstrieb, is a name for the modifications induced by the environment. Adaptation so defined comes to be synonymous with the fortuitous variation which plays so great a part in Darwin's theory of natural selection.
It goes without saying that Haeckel allowed to the organism no other nor higher individuality than belongs to the crystal, and took no account at all of that harmonious interaction of the organs which Cuvier called the principle of the "conditions of existence." The concept of correlation had simply no meaning for Haeckel. The analysis and disintegration of the organism was pushed by him to its logical extreme, and in this also he was a child of his time.
A no less important influence clearly visible in the General Morphology is the idealistic morphology of men like K. G. Carus and H. G. Bronn. In previous chapters we have seen how K. G. Carus attempted to work out a geometry of the organism, and how Bronn tried in a modest way to found a stereometrical morphology, but had the grace not to push his stereometry à l'outrance, recognising very wisely that the greater part of organic form is functionally determined. Haeckel took over this idea[367] and pushed it to wild extremes, founding a new science of "Promorphology" of which he was the greatest—and only—exponent.[368]
This "science" dealt with axes and planes, poles and angles, in a veritable orgy of barbarous technical terms. It was intended to be a "crystallography of the organic," and to lay the foundations of a mechanistic morphology, or morphography at least.
How it was to be linked up with the physics and chemistry of living matter on the one hand and with the ordinary morphology of real animals on the other, was never made quite clear.
The science of Promorphology has no historical significance; it is interesting only because it illustrates Haeckel's close affinity with the idealistic morphologists.
Another abortive science of Haeckel's, the science of Tectology, was equally a heritage from idealistic morphology. Tectology is the science of the composition of organisms from individuals of different orders. There were six orders of individuals:—(1) Plastids (Cytodes and cells); (2) Organs (including cell-fusions, tissues, organs, organ-systems); (3) Antimeres (homotypic parts, i.e., halves or rays); (4) Metameres (homodynamic parts, i.e., segments); (5) Persons (individuals in the ordinary sense); (6) Corms (colonial animals).
The thought is essentially transcendental, and recalls the "theory of the repetition of parts," of which so much use was made by the German transcendentalists, such as Goethe,[369] Oken, Meckel and K. G. Carus, as well as by Dugès.