Later in the same year Rathke discovered gill-slits in the chick,[187] in this case finding only three. He described growing out from in front of the first slit a structure which he compared to the operculum or gill-cover of a fish.
These discoveries were confirmed and extended for the chick[188] by the embryologist Huschke, a pupil of Oken. Like Rathke, he found only three indubitable gill-slits, but he noticed that the body-wall in front of the first gill-slit was really composed of two arches, which were on the whole similar to the gill-arches. The hinder of these two seemed to him to be a horn of the hyoid, the front one, which was bent at an angle, to be the rudiment of the upper and lower jaws (p. 401). Between these two arches he found an opening, just as between two gill-arches a gill-slit. This opening led into the mouth-cavity, and according to Huschke it became the external ear-passage. He discovered also three pairs of aortic arches in close relation with the gill-arches, so close indeed, that he did not hesitate to call them gill-arteries, and to recognise their resemblance with the aortic arches of fish. He traced, in part at least, the metamorphosis which these aortic arches undergo. This part of his discovery he developed in fuller detail in a paper of 1828,[189] in which he gave some excellent figures.
Shortly after Huschke's first paper, von Baer published his views and observations on this subject in a short memoir in Meckel's Archiv.[190] In this paper he confirmed Rathke's discovery, and described the slits and arches in the dog and the chick. Both Rathke and he found gill-slits in the human embryo about this time (p. 557). There were generally present, he found, four gill-slits, and, as Rathke had suggested, the first gill-arch became the lower jaw. Von Baer also confirmed Rathke's discovery of the operculum, assigning it, however, to the second gill-arch. He refused to accept Huschke's derivation of the auditory meatus from the first gill-slit. Von Baer saw what had escaped Rathke and Huschke, that there were, not three nor four, but as many as five aortic arches.
In his view of the metamorphosis of the aortic arches in the chick the first two pairs disappeared completely, the third pair gave rise to the arteries of the head and the fore-limbs, the right side of the fourth arch became the aorta, the left half of the fourth and the right half of the fifth arch became the pulmonary arteries, while the left half of the fifth arch disappeared. This schema, which for the last three arches was the same as Huschke's, von Baer upheld for the chick even in the second volume of his Entwickelungsgeschichte (p. 116); he rectified it, however, for mammals in the same volume (p. 212), deriving both pulmonary arteries from the fifth arch, and the aorta from the fourth left. He fully recognised the great analogy of the embryonic arrangement of gill-arches and gill-arteries in Tetrapoda with their arrangement in fish (i., pp. 53, 73).
Huschke, in a paper of 1832,[191] chiefly devoted to the development of the eye, figured and described the developing upper and lower jaws, and maintained against von Baer that the first slit turns into the auditory meatus and the Eustachian tube.
These were the first papers of the embryological period. Before going on to discuss the principles which guided embryological research during the next ten or twenty years it is convenient to note what were the main lines of work characterising the period.
The typical figure of the period is Rathke, who produced a great deal of first-class embryological work. He was, even more than von Baer, a comparative embryologist, and there were few groups of animals that he did not study. His first large publication, the Beiträge zur Geschichte der Thierwelt (i.-iv., Halle, 1820-27), contained much anatomical work in addition to the purely embryological; he commenced here his series of papers on the development of the genital and urinary organs, continued in the Abhandlungen zur Bildungsund Entwickelungs-Geschichte des Menschen und der Thiere (i., ii., Leipzig, 1832-3). A fellow-worker in this line was Johannes Müller, whose Bildungsgeschichte der Genitalien (Düsseldorf) appeared in 1830.
In a memoir on the development of the crayfish which appeared in 1829,[192] Rathke found in an Invertebrate confirmation of the germ-layer theory propounded by Pander and von Baer. He was greatly struck by the inverted position of the embryo with respect to the yolk. In following out the development of the appendages he noticed how much alike were jaws and legs in their earliest stage, and how this supported Savigny's contention that the limbs of Arthropods belonged to one single type of structure. In his paper (1832) on the development of the fresh-water Isopod, Asellus,[193] Rathke returns to this point. Commenting on the original similarity in development of antennæ, jaws and legs, he writes, "Whatever the doubts one may have reserved as to the intimate relation existing between the jaws and feet of articulate animals after the researches of Savigny on this subject and mine on developing crayfish, they must all fall to the ground when one examines with care the development of the fresh-water Asellus" (p. 147 of French translation).
Further comparative work by Rathke is found in the two volumes of Abhandlungen and in a book, Zur Morphologie, Reisebemerkungen aus Taurien (1837), which contains embryological studies of many different types, including a study of the uniform plan of arthropod limbs. Later on Rathke devoted himself more to vertebrate embryology, producing among other works his classical papers on the development of the adder (1839), of the tortoise (1848), and of the crocodile (1866). He laid the foundations of all subsequent knowledge of the development of the blood-vascular system in a series of papers of various dates from 1838 to 1856. The diagrams in his paper on the aortic arches of reptiles (1856) were for long copied in every text-book.
Rathke was a foremost worker in another important line of embryological work, the study of the development of the skeleton and particularly of the skull. We shall discuss the history of the embryological study of the skull in some detail below; meantime, we note the two other important lines of research which characterise this period. One is the intensive study of the development of the human embryo, a study pursued by, among others, Pockels, Seiler, Breschet, Velpeau, Bischoff, Weber, Müller, and Wharton Jones.[194] The other important line—the early development of the Mammalia—was worked chiefly by Valentin,[195] Coste,[196] and, above all, by Bischoff, whose series of papers[197] was justly recognised as classical.