What interests us chiefly in the work of this embryological period is, of course, the relation of embryology to comparative anatomy and to pure morphology. The embryologists were not slow to see that their work threw much light upon questions of homology, and upon the problem of the unity of plan. Von Baer, we have seen, recognised this clearly in 1828; Rathke, in one of his most brilliant papers, the Anatomische-philosophische Untersuchungen über den Kiemenapparat und das Zungenbein (Riga and Dorpat, 1832), used the facts of development with great effect to show the homology of the gill-arches and hyoid throughout the vertebrate series; Johannes Müller made great use of embryology in his classical Vergleichende Anatomie der Myxinoiden (i. Theil, 1836), and, according to his pupil Reichert, firmly held the opinion that embryology was the final court of appeal in disputed points of comparative anatomy;[198] Reichert himself in a book of 1838 (Vergleichende Entwickelungsgeschichte des Kopfes der nackten Amphibien) discussed the two different methods of arriving at the "Type"—the anatomical method of comparing adults, and the embryological method of comparing embryogenies. Of the embryological method, he says, "Its aim is to distinguish during the formation of the organism the originally given, the essence of the type, and to classify and interpret what is added or altered in the further course of development. Embryologists watch the gradual building up of the organism from its foundations, and distinguish the fundament, the primordial form, the type, from the individual developments; they reach thus, following Nature in a certain measure, the essential structure of the organism, and demonstrate the laws that manifest themselves during embryogeny" (p. vi.). The embryologists, influenced in this greatly by von Baer, gradually felt their way to substituting for the "Archetype" of pure morphology what one may perhaps best call the embryological archetype. How the transition was made we can best see by following out the course of discovery in one particular line. We choose for this purpose the development of the skull, a subject which excited much interest at this time and upon which much quite fundamental work was done, particularly by Rathke and Reichert.

Following up his discovery of gill-slits and arches in the embryos of birds and mammals, Rathke in two papers of 1832[199] and 1833[200] worked out the detailed homologies of the gill-arches in the higher Vertebrates. He describes how in the embryo of the Blenny there is a short, thick arch between the first gill-slit and the mouth. A furrow appears down the middle of the arch dividing it incompletely into two. In the anterior halves a cartilaginous rod is developed which is connected with the skull; these rods become on either side the lower jaw and "quadrate." In the posterior halves two similar rods are formed which develop into the hyoid. The hyoid is at first connected with the skull, but afterwards frees itself and becomes slung to the "quadrate." From the hinder edge of the hyoid arch grows out the membranous operculum, in which develop later the opercular bones and branchiostegal rays. The upper jaw is an independent outgrowth of the serous layer.

The serial homology of the lower jaw and quadrate with the hyoid and with the true gill-arches was thus established in fish, and Rathke had little difficulty in demonstrating a similar origin of lower jaw and hyoid in the embryos of higher Vertebrates. He could even, as we have noted before, find the homologue of the operculum in a flap which grows out from the hyoid arch in the embryo of birds.

But Rathke could not altogether shake himself free from the transcendental notion of the homology of jaws with ribs, and this led him to draw a certain distinction between the first two and the remaining gill-arches, by which the homology of the former with the ribs was asserted and the homology of the latter denied. He thought he could show that the skeletal structures (lower jaw, "quadrate," and hyoid) of the first two arches were formed in the serous layer, just like true ribs, and like them in close connection with the vertebral skeletal axis. The other, "true," gill-arches appeared to him to be formed in the mucous layer, in the lining of the alimentary canal. They had no direct connection with the vertebral column, and seemed therefore to belong to what Carus[201] had called the visceral or splanchno-skeleton. He did not, however, let this distinction hinder him from asserting the substantial homology of all the gill-arches inter se, the first two included.

Rathke's discoveries relative to the development of the jaws, the hyoid and the operculum, enabled him to make short work of the homologies proposed for them by the transcendentalists. He could prove from embryology that the jaws were not the equivalent of limbs, as so many Okenians believed. He could reject, with a mere reference to the facts of development, Geoffroy's comparison of the hyoid and the branchiostegal rays in fish with sternum and ribs. He could show the emptiness of the attempts made by Carus, Treviranus, de Blainville and Geoffroy, to establish by anatomical comparison the homologies of the opercular bones, for he could show that these bones were peculiar to fish, and were scarcely indicated, and that only temporarily, in the development of other Vertebrates.[202] He did not, however, himself realise the relation of the ear-ossicles to the gill-arches, though he knew that Spix and Geoffroy were quite wrong in homologising them with the opercular bones in fish. He described, it is true, the development of the external meatus of the ear and the Eustachian tube from the slit which appears between the first and the second arch, as Huschke had done before him; he described, in confirmation of Meckel, the "Meckelian process" of the hammer running down inside the lower jaw; but the discovery of the true homologies of the ear-ossicles was not made until a year or two later by Reichert.

In his further study of the development of Blennius viviparus, Rathke observed some important facts about the development of the vertebral column and skull. He found that the vertebral centra were first formed as rings in the chorda-sheath, which give off neural and hæmal processes. The vertebra later ossifies from four centres. The chorda (notochord) is prolonged some little way into the head, and the base of the cranium is formed by the expanded sheath, which reaches forward in front of the end of the notochord. This cranial basis shows a division into three segments, in which Rathke was inclined to see an indication of three cranial vertebræ. (It turned out that this division into three segments did not really exist, and Rathke later acknowledged that he had made an error of observation.) The side walls of the skull grow out from this base and form a fibrous capsule for the brain. The cranial section of the chorda itself shows no sign of segmentation; but later on the cranial portion of the chorda-sheath ossifies, like the vertebræ, from several centres. The vomer, which, in the classical form of the vertebral theory of the skull, was the centrum of the fourth, or foremost, cranial vertebra, does not, according to Rathke, develop in continuity with the cranial basis and the chorda sheath, but develops separately in the facial region.

Von Baer, like Rathke at this time, was also to some extent a believer in the vertebral theory of the skull. In his second volume (1834, pub. 1837) he holds that the development of the skull, as the sum of the anterior vertebral arches, is in general the same as that of the other neural arches, and is modified only by the great bulk of the brain (Entwickelungsgeschichte, ii., p. 99). He had, however, some doubts as to the entire correctness of the vertebral theory, doubts suggested by a study of the developing skull. "In the course of the formation of the head in the higher animals, something additional is introduced which does not originally belong to the cranial vertebræ. At first we see the vertebration in the hinder region of the skull very clearly. Afterwards it becomes suddenly indistinct, as if some new formation overlaid it" (i., p. 194).

Even more clearly is his doubt expressed in his paper on Cyprinus. "Upon the formation of the vertebral column only this need be said, that at this stage the notochord is very clearly seen, and the upper and lower arches and spinous processes are visible right to the end of the tail, but the separation into vertebræ ceases abruptly where the back passes into the head. I do not hesitate to assert that bony fish, too, have at this stage an unsegmented cartilaginous cranium (as cartilaginous fish have all their life), the prominences and hollows of which constitute its only resemblance with the vertebral type" (1835, p. 19).

A convinced supporter of the vertebral theory was Johannes Müller, who, in his classical memoir on the Myxinoids,[203] discussed at some length the relation between the development of the vertebræ and the development of the skull. His memoir is principally devoted to comparative anatomy, but in treating of the skeleton he pays much attention to development. He describes the formation of the vertebræ in elasmobranch embryos; for the facts regarding other Vertebrates he relies largely on work by Rathke (Blennius, 1833) and Dugès (1834). He recognises as the basis of his comparisons the homology of the notochord in all vertebrate embryos with the persistent notochord which forms the chief part or the whole of the vertebral column in the Cyclostomes. The notochord possesses an inner and an outer sheath and the outer sheath is continuous with the basis cranii (p. 92). It is in the outer sheath that the vertebræ develop—from four separate pieces, in fish at least, plus an additional element which helps to form the centrum. The skull of Vertebrates consists, according to Müller, of three vertebræ, whose centra are the basioccipital, the basisphenoid and the presphenoid. Other bones besides those belonging to the vertebræ are present, but this formation out of three vertebræ gives the essential schema for the skull. Now the brain capsule, like the sheath of the spinal cord, is a development from the outer sheath of the notochord. If the skull consists of vertebræ we should expect the centra of the skull-vertebræ to develop in the outer sheath at the sides of the cranial section of the notochord as two separate halves, just as do the bodies of the vertebræ; we should expect further the cartilaginous side-walls of the cranium to develop in the membranous brain-sheath just as the neural arches develop in the membranous sheath of the spinal column. In Rathke's discovery (!) of a segmentation of the basis cranii into three parts, and of the isolated formation of the vomer, Müller sees a confirmation of his view that the skull is composed of three and not four vertebræ. But there is nothing in Rathke's observations to support the idea that the centra of the cranial vertebræ are formed from separate halves. Müller has to be content with a reference to the state of things in Ammocoetes (which, by the way, he did not know to be the young of Petromyzon). In the simple skull of Ammocoetes the base is formed chiefly by two cartilaginous bars lying more or less parallel with the longitudinal axis of the skull and embracing with their hinder ends the cranial portion of the notochord.

These bars, declares Müller, are clearly the still separate halves of the pars basilaris cranii, and represent the divided centra of the two hinder cranial vertebræ. To complete the parallel between the development of the skull and of the vertebræ, it would have been necessary to show that the side walls of the cranium developed in a similar manner from separate pieces. Müller could not prove this point from the available embryological data, and indeed the facts which he did use had to be twisted to suit his theory. A curious apparent confirmation of his idea that the centra of the cranial vertebræ are formed from separate halves was supplied in 1839 by Rathke's discovery of the trabeculæ in the embryonic skull of the adder.