As to the rapid pulsations of the bell after cutting out the stomach end, this also is similar to Romanes’ results on Aurelia and other Scyphomedusæ, when he cut off parts of the manubrium or an aboral ring out of the bell. In these instances, however, Romanes soon obtained a slackening of the rhythm following the temporary acceleration. The temporary acceleration he attributes to the stimulus of cutting, and the slackening to a lack of some afferent stimulus from the removed tissue. Conant obtained the same results on Polyclonia by removing the oral arms (see Polyclonia) but says nothing about a slackening of the rhythm in Charybdea. I believe the increased rhythm in Charybdea was in part due to the decreased amount of labor necessary to force the water out of two openings instead of one, namely, past the velarium. Just how much this observation bears upon Romanes’ theory of rhythmic contraction, that the rhythm is due to an alternate exhaustion and recovery of the contractile tissue, as opposed to the ganglionic theory of rhythm of physiologists, one does not wish to speculate much. Yet, I feel that the observation rather supports this theory. The tissue having to do less work, would become less exhausted at each contraction and require less time for recovery and hence have a more rapid rhythm.
I here sum up Romanes’ theory in a few words. The ganglia liberate a constant and comparatively weak stimulus, one perhaps about minimal. This stimulus sets off the contractile tissue; but as the tissue contracts and becomes exhausted the constant stimulus becomes, in relation to it, sub-minimal, and it does not contract again until it has recovered and the stimulus is again strong enough to set it off. The ganglionic theory of rhythmic contraction supposes that the ganglia liberate stimuli to the contractile tissue at successive intervals. Romanes had this theory suggested to him by the rhythmic contractions he succeeded in obtaining by subjecting deganglionated bells to a continuous but weak faradic stimulus, or by placing them into weakly acidulated water, or into 5 per cent. glycerine. Romanes claims that his theory better explains muscular tonus and the contraction of involuntary muscle. He does not, however, hold this theory to the exclusion of the ganglionic theory, since only too often does he speak in terms of the latter. He further brings in his support the fact that the frog’s tongue, in which no ganglia have been demonstrated, can be made to contract rhythmically when subjected to a weak and continuous stimulus. He also calls attention to the rhythmic contractions seen in the Protozoa, the snail’s heart, etc. Finally, physiologists are much inclined to explain the rhythmic contraction of the heart and other involuntary muscles, in part, at least, as due to a property of the contractile tissue.
Margin, Radial Ganglia, Nerve—Experiments [18], [21-23], [30].—Complete removal of the margin did not stop pulsation; but the removal of the radial ganglia stopped it permanently. While this experiment seems to have been tried only once, yet, taking into consideration the results of other operations, it would seem that the principal centers of spontaneity reside in these ganglia. (It should here be remembered that the interradial ganglia were probably removed at the removing of the margin.)
Cutting the nerve in the eight adradii caused the pedalia to bend inwards at right angles to their normal position but did not in the least affect the coördination of the sides. When, however, the sides were cut in the eight adradii to the base of the stomach, coördination for the main part ceased, and each side pulsated in its own rhythm.
I have said that the principal centers of spontaneity reside in the radial ganglia. Upon further thought this hardly seems warranted. No doubt, among the principal motor centers must be placed the ganglionic masses of the clubs, and the radial ganglia, together with the homologous interradial ganglia, represent centers of equal value. I speak of these two sets of ganglia as homologous, since strictly speaking, they both belong to the margin, and the clubs at whose bases they lie probably represent modified tentacles. Conant’s experiments leave us in the dark as to the function of these ganglia. Next in order, it would seem, are the ganglion cells in the suspensoria, as is suggested by the contractions of an isolated side with a portion of a suspensorium attached. (See previous head.) While we have seen that the frenula and the velarium can contract by themselves, yet, I find no evidence that these can impart their contractions to any adjacent tissue.
Conant’s results on cutting the nerve eight times and then continuing the cuts to the base of the stomach are quite the same as Romanes and Eimer obtained upon Aurelia. Romanes, however, concludes that in his Sarsia, Tiaropsis, etc., coördination was broken when only short incisions were made in the margin. Charybdea appears, then, to agree with Aurelia rather than with the Hydromedusæ. Yet, since Romanes at first obtained similar results to those of Charybdea on Sarsia, but on further experimenting concluded that coördination had really been destroyed at the first cutting, we cannot speak with certainty that coördination had not been destroyed in Charybdea before the cuts had been continued to the base of the stomach. I say not with certainty, because the injury to the bell being slight, coördination may have been maintained on the principle of a simultaneously (simultaneous for the octants) alternate exhaustion and recovery of the contractile tissue on the principle of Romanes’ theory.
Stimulation.—Romanes found when he stimulated a deganglionated bell of a Hydromedusa, that it responded by a single contraction, while that of a Scyphomedusa responded with several quite rhythmic contractions. Charybdea in this respect agrees with the Scyphomedusæ. Romanes’ results were also verified on Aurelia. (Experiments [12c], [15], [50], [51].)
Activity of Charybdea.—In speaking of the activity of Charybdea, I cannot do better than refer the reader to the notes. (Experiment [41].) Conant remarks in his dissertation what an active swimmer Charybdea is, and this is further borne out by his later observations.
Temperature.—Ice in the water seemed to have no effect, except when held against an animal, when a slowing of pulsation followed in a few instances. On some pulsating actively in the sun the temperature of the water was found to be 92° F. (Experiments [33-35].)