The pedalia, then, it would seem, serve also as a steering apparatus, for which they are admirably fitted, considering their blade-like thinness.
Considering, now, the reflexes noted under this head and the preceding one, we find that there is an intimate nervous connection between the velarium and frenula, subumbrella, sensory clubs, nerve, and a single pedalium, on the one hand, and the pedalia on the other hand. This is born out fully, furthermore, by the histological evidence—(See Introduction and “Cubomedusæ”). Considering the subumbral plexus of ganglion cells and fibers, including the velarium and the frenula, which is in connection with the nerve ring and this again with the sensory clubs and the interradial ganglia at the bases of the pedalia, we have a basis for these reflexes. While Conant failed to demonstrate nerves (“Cubomedusæ”) from the interradial ganglia to the pedalia, yet, that a nervous connection exists between the pedalia and the bell is well shown by his physiological experiments. I have, furthermore, demonstrated ganglion cells under the ectoderm of the tentacles (see Histology).
Romanes obtained quite similar results in the Hydromedusæ. He found that when a tentacle of Sarsia was slightly stimulated, it alone would contract, but when it was more strongly stimulated the other tentacles also would respond as also the manubrium. I find no evidence in Conant’s notes of any such response of the manubrium of Charybdea, except when the clubs were cut off.
The reflex obtained on stimulating the subumbrella of Charybdea, when the pedalia would contract, is somewhat different from that obtained by Romanes, who found that the most sensitive part of the subumbrella in producing a reflex of the margin was at the junction of the manubrium to the bell and that the subumbrella below this point did not give the reflex.
Stomach, Suspensoria, Proboscis, Subumbrella—Experiments [12], [18], [19], [24-26], [29], [31].—The proboscis and the stomach with the phacelli when cut out, contracted with or without the lips removed. The isolated lips also contracted (twitched).
Pieces of the sides connected only with the stomach and suspensoria, or with the margin (Experiment [47] (?)) twitched spontaneously, but seldom did so when these were removed. In one instance the whole side was cut out so as to exclude the radial ganglion but still connected with a portion of the suspensorium. This pulsated, or contracted, but on being halved transversely, the lower half ceased to contract while the upper half connected with the suspensorium, continued to contract.
Cutting off the whole stomach end of the animal excited to very rapid pulsations of the remaining part, with the stream of water stronger out the aboral end than past the velarium.
Conant says, “It seems I get no good evidence of the subumbrella without connection with special nerve centers being able to contract by itself.” The piece in which he did get contractions he suspects may have been intimately associated with some part of the frenula or the suspensoria. In Polyclonia no such doubt exists, for small pieces of subumbrella were seen to contract. A small piece of subumbrella of Charybdea with a sensory club attached could contract by itself.
From the above it would seem that a center capable of inciting to contractions resided in the suspensoria as well as in the sensory clubs, and this may be one of the centers that becomes potent upon the removal of the clubs. This is further supported by Conant’s observation (Introduction and “Cubomedusæ”) that an extra large number of ganglion cells is found under the epithelium of the suspensoria. A somewhat similarly located center of spontaneity described by Romanes for Staurophora laciniata (Hydromedusa) has already been noted.